Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval3 Structured version   Visualization version   GIF version

Theorem cvrval3 35119
Description: Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
cvrval3.b 𝐵 = (Base‘𝐾)
cvrval3.l = (le‘𝐾)
cvrval3.j = (join‘𝐾)
cvrval3.c 𝐶 = ( ⋖ ‘𝐾)
cvrval3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval3
StepHypRef Expression
1 cvrval3.b . . . . . 6 𝐵 = (Base‘𝐾)
2 eqid 2724 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
3 cvrval3.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 34977 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌)
5 cvrval3.l . . . . . 6 = (le‘𝐾)
6 cvrval3.j . . . . . 6 = (join‘𝐾)
7 cvrval3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
81, 5, 2, 6, 3, 7hlrelat3 35118 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
94, 8syldan 488 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌))
10 simp3l 1220 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐶(𝑋 𝑝))
11 simp1l1 1303 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ HL)
12 simp1l2 1304 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐵)
13 simp2 1129 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑝𝐴)
141, 5, 6, 3, 7cvr1 35116 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑝𝐴) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
1511, 12, 13, 14syl3anc 1439 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
1610, 15mpbird 247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → ¬ 𝑝 𝑋)
17 hllat 35070 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1811, 17syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ Lat)
191, 7atbase 34996 . . . . . . . . . . 11 (𝑝𝐴𝑝𝐵)
20193ad2ant2 1126 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑝𝐵)
211, 6latjcl 17173 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑝𝐵) → (𝑋 𝑝) ∈ 𝐵)
2218, 12, 20, 21syl3anc 1439 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) ∈ 𝐵)
231, 2, 3cvrlt 34977 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑋 𝑝) ∈ 𝐵) ∧ 𝑋𝐶(𝑋 𝑝)) → 𝑋(lt‘𝐾)(𝑋 𝑝))
2411, 12, 22, 10, 23syl31anc 1442 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋(lt‘𝐾)(𝑋 𝑝))
25 simp3r 1221 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) 𝑌)
26 hlpos 35072 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2711, 26syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝐾 ∈ Poset)
28 simp1l3 1305 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑌𝐵)
29 simp1r 1217 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → 𝑋𝐶𝑌)
301, 5, 2, 3cvrnbtwn2 34982 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑝) ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋(lt‘𝐾)(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) ↔ (𝑋 𝑝) = 𝑌))
3127, 12, 28, 22, 29, 30syl131anc 1452 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → ((𝑋(lt‘𝐾)(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) ↔ (𝑋 𝑝) = 𝑌))
3224, 25, 31mpbi2and 994 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (𝑋 𝑝) = 𝑌)
3316, 32jca 555 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑝𝐴 ∧ (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌)) → (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))
34333exp 1112 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑝𝐴 → ((𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) → (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))))
3534reximdvai 3117 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (∃𝑝𝐴 (𝑋𝐶(𝑋 𝑝) ∧ (𝑋 𝑝) 𝑌) → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
369, 35mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌))
3736ex 449 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
38 simp3l 1220 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → ¬ 𝑝 𝑋)
39 simp11 1222 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝐾 ∈ HL)
40 simp12 1223 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐵)
41 simp2 1129 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑝𝐴)
4239, 40, 41, 14syl3anc 1439 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → (¬ 𝑝 𝑋𝑋𝐶(𝑋 𝑝)))
4338, 42mpbid 222 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐶(𝑋 𝑝))
44 simp3r 1221 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → (𝑋 𝑝) = 𝑌)
4543, 44breqtrd 4786 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)) → 𝑋𝐶𝑌)
4645rexlimdv3a 3135 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌) → 𝑋𝐶𝑌))
4737, 46impbid 202 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝𝐴𝑝 𝑋 ∧ (𝑋 𝑝) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wrex 3015   class class class wbr 4760  cfv 6001  (class class class)co 6765  Basecbs 15980  lecple 16071  Posetcpo 17062  ltcplt 17063  joincjn 17066  Latclat 17167  ccvr 34969  Atomscatm 34970  HLchlt 35057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-preset 17050  df-poset 17068  df-plt 17080  df-lub 17096  df-glb 17097  df-join 17098  df-meet 17099  df-p0 17161  df-lat 17168  df-clat 17230  df-oposet 34883  df-ol 34885  df-oml 34886  df-covers 34973  df-ats 34974  df-atl 35005  df-cvlat 35029  df-hlat 35058
This theorem is referenced by:  cvrval4N  35120  cvrval5  35121  islln3  35216  llnexatN  35227  islpln3  35239  lplnexatN  35269  islvol3  35282  isline4N  35483  lhpexnle  35712
  Copyright terms: Public domain W3C validator