Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval2 Structured version   Visualization version   GIF version

Theorem cvrval2 34879
 Description: Binary relation expressing 𝑌 covers 𝑋. Definition of covers in [Kalmbach] p. 15. (cvbr2 29270 analog.) (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrval2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐶(𝑧)   < (𝑧)   (𝑧)

Proof of Theorem cvrval2
StepHypRef Expression
1 cvrletr.b . . 3 𝐵 = (Base‘𝐾)
2 cvrletr.s . . 3 < = (lt‘𝐾)
3 cvrletr.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 34874 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
5 iman 439 . . . . . . . 8 (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ ¬ 𝑧 = 𝑌))
6 df-ne 2824 . . . . . . . . 9 (𝑧𝑌 ↔ ¬ 𝑧 = 𝑌)
76anbi2i 730 . . . . . . . 8 (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ ((𝑋 < 𝑧𝑧 𝑌) ∧ ¬ 𝑧 = 𝑌))
85, 7xchbinxr 324 . . . . . . 7 (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌))
9 cvrletr.l . . . . . . . . . . . . 13 = (le‘𝐾)
109, 2pltval 17007 . . . . . . . . . . . 12 ((𝐾𝐴𝑧𝐵𝑌𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
11103com23 1291 . . . . . . . . . . 11 ((𝐾𝐴𝑌𝐵𝑧𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
12113expa 1284 . . . . . . . . . 10 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
1312anbi2d 740 . . . . . . . . 9 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → ((𝑋 < 𝑧𝑧 < 𝑌) ↔ (𝑋 < 𝑧 ∧ (𝑧 𝑌𝑧𝑌))))
14 anass 682 . . . . . . . . 9 (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ (𝑋 < 𝑧 ∧ (𝑧 𝑌𝑧𝑌)))
1513, 14syl6rbbr 279 . . . . . . . 8 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ (𝑋 < 𝑧𝑧 < 𝑌)))
1615notbid 307 . . . . . . 7 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
178, 16syl5bb 272 . . . . . 6 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
1817ralbidva 3014 . . . . 5 ((𝐾𝐴𝑌𝐵) → (∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
19 ralnex 3021 . . . . 5 (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))
2018, 19syl6bb 276 . . . 4 ((𝐾𝐴𝑌𝐵) → (∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2120anbi2d 740 . . 3 ((𝐾𝐴𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
22213adant2 1100 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
234, 22bitr4d 271 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942   class class class wbr 4685  ‘cfv 5926  Basecbs 15904  lecple 15995  ltcplt 16988   ⋖ ccvr 34867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-plt 17005  df-covers 34871 This theorem is referenced by:  isat3  34912  cvlcvr1  34944
 Copyright terms: Public domain W3C validator