Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvratlem Structured version   Visualization version   GIF version

Theorem cvratlem 35025
Description: Lemma for cvrat 35026. (atcvatlem 29372 analog.) (Contributed by NM, 22-Nov-2011.)
Hypotheses
Ref Expression
cvrat.b 𝐵 = (Base‘𝐾)
cvrat.s < = (lt‘𝐾)
cvrat.j = (join‘𝐾)
cvrat.z 0 = (0.‘𝐾)
cvrat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvratlem (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))

Proof of Theorem cvratlem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 hlatl 34965 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 480 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
3 simpr1 1087 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
4 cvrat.b . . . . . 6 𝐵 = (Base‘𝐾)
5 eqid 2651 . . . . . 6 (le‘𝐾) = (le‘𝐾)
6 cvrat.z . . . . . 6 0 = (0.‘𝐾)
7 cvrat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atlex 34921 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋)
983expia 1286 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋0 → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋))
102, 3, 9syl2anc 694 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋))
1113ad2ant1 1102 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ AtLat)
12 simp22 1115 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
13 simp3 1083 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
145, 7atcmp 34916 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑟𝐴) → (𝑃(le‘𝐾)𝑟𝑃 = 𝑟))
1511, 12, 13, 14syl3anc 1366 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃(le‘𝐾)𝑟𝑃 = 𝑟))
16 breq1 4688 . . . . . . . . . . . . . . . . 17 (𝑃 = 𝑟 → (𝑃(le‘𝐾)𝑋𝑟(le‘𝐾)𝑋))
1716biimprd 238 . . . . . . . . . . . . . . . 16 (𝑃 = 𝑟 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
1815, 17syl6bi 243 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃(le‘𝐾)𝑟 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋)))
1918com23 86 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑃(le‘𝐾)𝑟𝑃(le‘𝐾)𝑋)))
20 con3 149 . . . . . . . . . . . . . 14 ((𝑃(le‘𝐾)𝑟𝑃(le‘𝐾)𝑋) → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑃(le‘𝐾)𝑟))
2119, 20syl6 35 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑃(le‘𝐾)𝑟)))
2221impd 446 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋) → ¬ 𝑃(le‘𝐾)𝑟))
23 simp1 1081 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
244, 7atbase 34894 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟𝐵)
25243ad2ant3 1104 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐵)
26 cvrat.j . . . . . . . . . . . . . 14 = (join‘𝐾)
27 eqid 2651 . . . . . . . . . . . . . 14 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
284, 5, 26, 27, 7cvr1 35014 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑟𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
2923, 25, 12, 28syl3anc 1366 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (¬ 𝑃(le‘𝐾)𝑟𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
3022, 29sylibd 229 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋) → 𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
3130imp 444 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → 𝑟( ⋖ ‘𝐾)(𝑟 𝑃))
32 hllat 34968 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Lat)
33323ad2ant1 1102 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ Lat)
344, 7atbase 34894 . . . . . . . . . . . . 13 (𝑃𝐴𝑃𝐵)
3512, 34syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐵)
364, 26latjcom 17106 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑟𝐵) → (𝑃 𝑟) = (𝑟 𝑃))
3733, 35, 25, 36syl3anc 1366 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑟) = (𝑟 𝑃))
3837adantr 480 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → (𝑃 𝑟) = (𝑟 𝑃))
3931, 38breqtrrd 4713 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → 𝑟( ⋖ ‘𝐾)(𝑃 𝑟))
4039adantrrl 760 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟( ⋖ ‘𝐾)(𝑃 𝑟))
415, 26, 7hlatlej1 34979 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑟))
4223, 12, 13, 41syl3anc 1366 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑟))
4342adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑃(le‘𝐾)(𝑃 𝑟))
445, 7atcmp 34916 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ AtLat ∧ 𝑟𝐴𝑃𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
4511, 13, 12, 44syl3anc 1366 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
46 breq1 4688 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
4746biimpd 219 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
4845, 47syl6bi 243 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋)))
4948com23 86 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑟(le‘𝐾)𝑃𝑃(le‘𝐾)𝑋)))
50 con3 149 . . . . . . . . . . . . . . 15 ((𝑟(le‘𝐾)𝑃𝑃(le‘𝐾)𝑋) → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑟(le‘𝐾)𝑃))
5149, 50syl6 35 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑟(le‘𝐾)𝑃)))
5251imp32 448 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → ¬ 𝑟(le‘𝐾)𝑃)
5352adantrrl 760 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ¬ 𝑟(le‘𝐾)𝑃)
54 simprl 809 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑟(le‘𝐾)𝑋)
55 simp21 1114 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑋𝐵)
56 simp23 1116 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐴)
574, 7atbase 34894 . . . . . . . . . . . . . . . . . . 19 (𝑄𝐴𝑄𝐵)
5856, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐵)
594, 26latjcl 17098 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
6033, 35, 58, 59syl3anc 1366 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑄) ∈ 𝐵)
6123, 55, 603jca 1261 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵))
62 cvrat.s . . . . . . . . . . . . . . . . . 18 < = (lt‘𝐾)
635, 62pltle 17008 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 < (𝑃 𝑄) → 𝑋(le‘𝐾)(𝑃 𝑄)))
6463imp 444 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) ∧ 𝑋 < (𝑃 𝑄)) → 𝑋(le‘𝐾)(𝑃 𝑄))
6561, 64sylan 487 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ 𝑋 < (𝑃 𝑄)) → 𝑋(le‘𝐾)(𝑃 𝑄))
6665adantrl 752 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑋(le‘𝐾)(𝑃 𝑄))
67 hlpos 34970 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ Poset)
68673ad2ant1 1102 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ Poset)
694, 5postr 17000 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ (𝑟𝐵𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7068, 25, 55, 60, 69syl13anc 1368 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7170adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7254, 66, 71mp2and 715 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑟(le‘𝐾)(𝑃 𝑄))
7372adantrrr 761 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟(le‘𝐾)(𝑃 𝑄))
744, 5, 26, 7hlexch1 34986 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵) ∧ ¬ 𝑟(le‘𝐾)𝑃) → (𝑟(le‘𝐾)(𝑃 𝑄) → 𝑄(le‘𝐾)(𝑃 𝑟)))
75743expia 1286 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵)) → (¬ 𝑟(le‘𝐾)𝑃 → (𝑟(le‘𝐾)(𝑃 𝑄) → 𝑄(le‘𝐾)(𝑃 𝑟))))
7675impd 446 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵)) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7723, 13, 56, 35, 76syl13anc 1368 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7877adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7953, 73, 78mp2and 715 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑄(le‘𝐾)(𝑃 𝑟))
804, 26latjcl 17098 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑟𝐵) → (𝑃 𝑟) ∈ 𝐵)
8133, 35, 25, 80syl3anc 1366 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑟) ∈ 𝐵)
824, 5, 26latjle12 17109 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵 ∧ (𝑃 𝑟) ∈ 𝐵)) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8333, 35, 58, 81, 82syl13anc 1368 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8483adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8543, 79, 84mpbi2and 976 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟))
865, 26, 7hlatlej1 34979 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃(le‘𝐾)(𝑃 𝑄))
8723, 12, 56, 86syl3anc 1366 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑄))
8887adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑃(le‘𝐾)(𝑃 𝑄))
894, 5, 26latjle12 17109 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑟𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9033, 35, 25, 60, 89syl13anc 1368 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9190adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9288, 73, 91mpbi2and 976 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄))
9333, 60, 813jca 1261 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵))
9493adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵))
954, 5latasymb 17101 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵) → (((𝑃 𝑄)(le‘𝐾)(𝑃 𝑟) ∧ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑄) = (𝑃 𝑟)))
9694, 95syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (((𝑃 𝑄)(le‘𝐾)(𝑃 𝑟) ∧ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑄) = (𝑃 𝑟)))
9785, 92, 96mpbi2and 976 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑄) = (𝑃 𝑟))
98 breq2 4689 . . . . . . . . . . . 12 ((𝑃 𝑄) = (𝑃 𝑟) → (𝑋 < (𝑃 𝑄) ↔ 𝑋 < (𝑃 𝑟)))
9998biimpcd 239 . . . . . . . . . . 11 (𝑋 < (𝑃 𝑄) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
10099adantr 480 . . . . . . . . . 10 ((𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
101100ad2antll 765 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
10297, 101mpd 15 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑋 < (𝑃 𝑟))
1034, 5, 62, 27cvrnbtwn3 34881 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵) ∧ 𝑟( ⋖ ‘𝐾)(𝑃 𝑟)) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) ↔ 𝑟 = 𝑋))
104103biimpd 219 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵) ∧ 𝑟( ⋖ ‘𝐾)(𝑃 𝑟)) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
1051043expia 1286 . . . . . . . . . . . . 13 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵)) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋)))
10668, 25, 81, 55, 105syl13anc 1368 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋)))
107106exp4a 632 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑟) → 𝑟 = 𝑋))))
108107com23 86 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → (𝑋 < (𝑃 𝑟) → 𝑟 = 𝑋))))
109108imp4b 612 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ 𝑟(le‘𝐾)𝑋) → ((𝑟( ⋖ ‘𝐾)(𝑃 𝑟) ∧ 𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
110109adantrr 753 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑟( ⋖ ‘𝐾)(𝑃 𝑟) ∧ 𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
11140, 102, 110mp2and 715 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟 = 𝑋)
112 simpl3 1086 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟𝐴)
113111, 112eqeltrrd 2731 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑋𝐴)
114113exp45 641 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
1151143expa 1284 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
116115rexlimdva 3060 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (∃𝑟𝐴 𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
11710, 116syld 47 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
118117imp32 448 1 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  Posetcpo 16987  ltcplt 16988  joincjn 16991  0.cp0 17084  Latclat 17092  ccvr 34867  Atomscatm 34868  AtLatcal 34869  HLchlt 34955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956
This theorem is referenced by:  cvrat  35026
  Copyright terms: Public domain W3C validator