Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat2 Structured version   Visualization version   GIF version

Theorem cvrat2 35236
 Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. (atcvat2i 29576 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat2.b 𝐵 = (Base‘𝐾)
cvrat2.j = (join‘𝐾)
cvrat2.c 𝐶 = ( ⋖ ‘𝐾)
cvrat2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄𝑋𝐶(𝑃 𝑄))) → 𝑋𝐴)

Proof of Theorem cvrat2
StepHypRef Expression
1 cvrat2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
2 cvrat2.j . . . . . . . . 9 = (join‘𝐾)
3 eqid 2760 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
4 cvrat2.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
5 cvrat2.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5atcvrj0 35235 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = (0.‘𝐾) ↔ 𝑃 = 𝑄))
763expa 1112 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = (0.‘𝐾) ↔ 𝑃 = 𝑄))
87necon3bid 2976 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 ≠ (0.‘𝐾) ↔ 𝑃𝑄))
9 simpl 474 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
10 simpr1 1234 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
11 hllat 35171 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1211adantr 472 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
13 simpr2 1236 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
141, 5atbase 35097 . . . . . . . . . . 11 (𝑃𝐴𝑃𝐵)
1513, 14syl 17 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
16 simpr3 1238 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
171, 5atbase 35097 . . . . . . . . . . 11 (𝑄𝐴𝑄𝐵)
1816, 17syl 17 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
191, 2latjcl 17272 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
2012, 15, 18, 19syl3anc 1477 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
21 eqid 2760 . . . . . . . . . . 11 (lt‘𝐾) = (lt‘𝐾)
221, 21, 4cvrlt 35078 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) ∧ 𝑋𝐶(𝑃 𝑄)) → 𝑋(lt‘𝐾)(𝑃 𝑄))
2322ex 449 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋𝐶(𝑃 𝑄) → 𝑋(lt‘𝐾)(𝑃 𝑄)))
249, 10, 20, 23syl3anc 1477 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → 𝑋(lt‘𝐾)(𝑃 𝑄)))
251, 21, 2, 3, 5cvrat 35229 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 ≠ (0.‘𝐾) ∧ 𝑋(lt‘𝐾)(𝑃 𝑄)) → 𝑋𝐴))
2625expcomd 453 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(lt‘𝐾)(𝑃 𝑄) → (𝑋 ≠ (0.‘𝐾) → 𝑋𝐴)))
2724, 26syld 47 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑋 ≠ (0.‘𝐾) → 𝑋𝐴)))
2827imp 444 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 ≠ (0.‘𝐾) → 𝑋𝐴))
298, 28sylbird 250 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑃𝑄𝑋𝐴))
3029ex 449 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑃𝑄𝑋𝐴)))
3130com23 86 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃𝑄 → (𝑋𝐶(𝑃 𝑄) → 𝑋𝐴)))
3231impd 446 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄𝑋𝐶(𝑃 𝑄)) → 𝑋𝐴))
33323impia 1110 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄𝑋𝐶(𝑃 𝑄))) → 𝑋𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  ltcplt 17162  joincjn 17165  0.cp0 17258  Latclat 17266   ⋖ ccvr 35070  Atomscatm 35071  HLchlt 35158 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159 This theorem is referenced by:  cvrat3  35249  atcvrlln  35327  lncvrelatN  35588
 Copyright terms: Public domain W3C validator