Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn3 Structured version   Visualization version   GIF version

Theorem cvnbtwn3 29487
 Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴)))

Proof of Theorem cvnbtwn3
StepHypRef Expression
1 cvnbtwn 29485 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
2 iman 388 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐴 = 𝐶) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
3 eqcom 2778 . . . 4 (𝐶 = 𝐴𝐴 = 𝐶)
43imbi2i 325 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴) ↔ ((𝐴𝐶𝐶𝐵) → 𝐴 = 𝐶))
5 dfpss2 3842 . . . . . 6 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 = 𝐶))
65anbi1i 610 . . . . 5 ((𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶𝐵))
7 an32 625 . . . . 5 (((𝐴𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
86, 7bitri 264 . . . 4 ((𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
98notbii 309 . . 3 (¬ (𝐴𝐶𝐶𝐵) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
102, 4, 93bitr4ri 293 . 2 (¬ (𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴))
111, 10syl6ib 241 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ⊆ wss 3723   ⊊ wpss 3724   class class class wbr 4786   Cℋ cch 28126   ⋖ℋ ccv 28161 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-cv 29478 This theorem is referenced by:  atcveq0  29547  atcvatlem  29584
 Copyright terms: Public domain W3C validator