Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmshmeo Structured version   Visualization version   GIF version

Theorem cvmshmeo 31585
Description: Every element of an even covering of 𝑈 is homeomorphic to 𝑈 via 𝐹. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmshmeo ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmshmeo
StepHypRef Expression
1 cvmcov.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
21cvmsi 31579 . . . . 5 (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
32simp3d 1137 . . . 4 (𝑇 ∈ (𝑆𝑈) → ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
43simprd 477 . . 3 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))
5 simpr 471 . . . 4 ((∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))
65ralimi 3100 . . 3 (∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → ∀𝑢𝑇 (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))
74, 6syl 17 . 2 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇 (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))
8 reseq2 5529 . . . 4 (𝑢 = 𝐴 → (𝐹𝑢) = (𝐹𝐴))
9 oveq2 6800 . . . . 5 (𝑢 = 𝐴 → (𝐶t 𝑢) = (𝐶t 𝐴))
109oveq1d 6807 . . . 4 (𝑢 = 𝐴 → ((𝐶t 𝑢)Homeo(𝐽t 𝑈)) = ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
118, 10eleq12d 2843 . . 3 (𝑢 = 𝐴 → ((𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)) ↔ (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈))))
1211rspccva 3457 . 2 ((∀𝑢𝑇 (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)) ∧ 𝐴𝑇) → (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
137, 12sylan 561 1 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  wral 3060  {crab 3064  cdif 3718  cin 3720  wss 3721  c0 4061  𝒫 cpw 4295  {csn 4314   cuni 4572  cmpt 4861  ccnv 5248  cres 5251  cima 5252  cfv 6031  (class class class)co 6792  t crest 16288  Homeochmeo 21776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795
This theorem is referenced by:  cvmsf1o  31586  cvmsss2  31588  cvmopnlem  31592  cvmliftlem8  31606
  Copyright terms: Public domain W3C validator