Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsdisj Structured version   Visualization version   GIF version

Theorem cvmsdisj 31584
Description: An even covering of 𝑈 is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmsdisj ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣   𝑣,𝐵
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmsdisj
StepHypRef Expression
1 df-ne 2943 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 cvmcov.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
32cvmsi 31579 . . . . . . . . . 10 (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
43simp3d 1137 . . . . . . . . 9 (𝑇 ∈ (𝑆𝑈) → ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
54simprd 477 . . . . . . . 8 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))
6 simpl 468 . . . . . . . . 9 ((∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
76ralimi 3100 . . . . . . . 8 (∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → ∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
85, 7syl 17 . . . . . . 7 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
9 sneq 4324 . . . . . . . . . 10 (𝑢 = 𝐴 → {𝑢} = {𝐴})
109difeq2d 3877 . . . . . . . . 9 (𝑢 = 𝐴 → (𝑇 ∖ {𝑢}) = (𝑇 ∖ {𝐴}))
11 ineq1 3956 . . . . . . . . . 10 (𝑢 = 𝐴 → (𝑢𝑣) = (𝐴𝑣))
1211eqeq1d 2772 . . . . . . . . 9 (𝑢 = 𝐴 → ((𝑢𝑣) = ∅ ↔ (𝐴𝑣) = ∅))
1310, 12raleqbidv 3300 . . . . . . . 8 (𝑢 = 𝐴 → (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ↔ ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅))
1413rspccva 3457 . . . . . . 7 ((∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ 𝐴𝑇) → ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅)
158, 14sylan 561 . . . . . 6 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅)
16 necom 2995 . . . . . . 7 (𝐴𝐵𝐵𝐴)
17 eldifsn 4451 . . . . . . . 8 (𝐵 ∈ (𝑇 ∖ {𝐴}) ↔ (𝐵𝑇𝐵𝐴))
1817biimpri 218 . . . . . . 7 ((𝐵𝑇𝐵𝐴) → 𝐵 ∈ (𝑇 ∖ {𝐴}))
1916, 18sylan2b 573 . . . . . 6 ((𝐵𝑇𝐴𝐵) → 𝐵 ∈ (𝑇 ∖ {𝐴}))
20 ineq2 3957 . . . . . . . 8 (𝑣 = 𝐵 → (𝐴𝑣) = (𝐴𝐵))
2120eqeq1d 2772 . . . . . . 7 (𝑣 = 𝐵 → ((𝐴𝑣) = ∅ ↔ (𝐴𝐵) = ∅))
2221rspccv 3455 . . . . . 6 (∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅ → (𝐵 ∈ (𝑇 ∖ {𝐴}) → (𝐴𝐵) = ∅))
2315, 19, 22syl2im 40 . . . . 5 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝐵𝑇𝐴𝐵) → (𝐴𝐵) = ∅))
2423expd 400 . . . 4 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐵𝑇 → (𝐴𝐵 → (𝐴𝐵) = ∅)))
25243impia 1108 . . 3 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴𝐵 → (𝐴𝐵) = ∅))
261, 25syl5bir 233 . 2 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (¬ 𝐴 = 𝐵 → (𝐴𝐵) = ∅))
2726orrd 843 1 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wo 826  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wral 3060  {crab 3064  cdif 3718  cin 3720  wss 3721  c0 4061  𝒫 cpw 4295  {csn 4314   cuni 4572  cmpt 4861  ccnv 5248  cres 5251  cima 5252  cfv 6031  (class class class)co 6792  t crest 16288  Homeochmeo 21776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795
This theorem is referenced by:  cvmscld  31587  cvmsss2  31588  cvmseu  31590
  Copyright terms: Public domain W3C validator