Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem3 Structured version   Visualization version   GIF version

Theorem cvmliftlem3 31395
 Description: Lemma for cvmlift 31407. Since 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ 𝑊), every element 𝐴 ∈ 𝑊 satisfies (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem3.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
cvmliftlem3.m ((𝜑𝜓) → 𝐴𝑊)
Assertion
Ref Expression
cvmliftlem3 ((𝜑𝜓) → (𝐺𝐴) ∈ (1st ‘(𝑇𝑀)))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐴(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem3
StepHypRef Expression
1 cvmliftlem1.m . . 3 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
2 cvmliftlem.a . . . 4 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
32adantr 480 . . 3 ((𝜑𝜓) → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
4 oveq1 6697 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘 − 1) = (𝑀 − 1))
54oveq1d 6705 . . . . . . . 8 (𝑘 = 𝑀 → ((𝑘 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁))
6 oveq1 6697 . . . . . . . 8 (𝑘 = 𝑀 → (𝑘 / 𝑁) = (𝑀 / 𝑁))
75, 6oveq12d 6708 . . . . . . 7 (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
8 cvmliftlem3.3 . . . . . . 7 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
97, 8syl6eqr 2703 . . . . . 6 (𝑘 = 𝑀 → (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁)) = 𝑊)
109imaeq2d 5501 . . . . 5 (𝑘 = 𝑀 → (𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) = (𝐺𝑊))
11 fveq2 6229 . . . . . 6 (𝑘 = 𝑀 → (𝑇𝑘) = (𝑇𝑀))
1211fveq2d 6233 . . . . 5 (𝑘 = 𝑀 → (1st ‘(𝑇𝑘)) = (1st ‘(𝑇𝑀)))
1310, 12sseq12d 3667 . . . 4 (𝑘 = 𝑀 → ((𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)) ↔ (𝐺𝑊) ⊆ (1st ‘(𝑇𝑀))))
1413rspcv 3336 . . 3 (𝑀 ∈ (1...𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)) → (𝐺𝑊) ⊆ (1st ‘(𝑇𝑀))))
151, 3, 14sylc 65 . 2 ((𝜑𝜓) → (𝐺𝑊) ⊆ (1st ‘(𝑇𝑀)))
16 cvmliftlem3.m . . 3 ((𝜑𝜓) → 𝐴𝑊)
17 cvmliftlem.g . . . . . . 7 (𝜑𝐺 ∈ (II Cn 𝐽))
18 iiuni 22731 . . . . . . . 8 (0[,]1) = II
19 cvmliftlem.x . . . . . . . 8 𝑋 = 𝐽
2018, 19cnf 21098 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
2117, 20syl 17 . . . . . 6 (𝜑𝐺:(0[,]1)⟶𝑋)
2221adantr 480 . . . . 5 ((𝜑𝜓) → 𝐺:(0[,]1)⟶𝑋)
23 ffun 6086 . . . . 5 (𝐺:(0[,]1)⟶𝑋 → Fun 𝐺)
2422, 23syl 17 . . . 4 ((𝜑𝜓) → Fun 𝐺)
25 cvmliftlem.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
26 cvmliftlem.b . . . . . 6 𝐵 = 𝐶
27 cvmliftlem.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
28 cvmliftlem.p . . . . . 6 (𝜑𝑃𝐵)
29 cvmliftlem.e . . . . . 6 (𝜑 → (𝐹𝑃) = (𝐺‘0))
30 cvmliftlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
31 cvmliftlem.t . . . . . 6 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
32 cvmliftlem.l . . . . . 6 𝐿 = (topGen‘ran (,))
3325, 26, 19, 27, 17, 28, 29, 30, 31, 2, 32, 1, 8cvmliftlem2 31394 . . . . 5 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
34 fdm 6089 . . . . . 6 (𝐺:(0[,]1)⟶𝑋 → dom 𝐺 = (0[,]1))
3522, 34syl 17 . . . . 5 ((𝜑𝜓) → dom 𝐺 = (0[,]1))
3633, 35sseqtr4d 3675 . . . 4 ((𝜑𝜓) → 𝑊 ⊆ dom 𝐺)
37 funfvima2 6533 . . . 4 ((Fun 𝐺𝑊 ⊆ dom 𝐺) → (𝐴𝑊 → (𝐺𝐴) ∈ (𝐺𝑊)))
3824, 36, 37syl2anc 694 . . 3 ((𝜑𝜓) → (𝐴𝑊 → (𝐺𝐴) ∈ (𝐺𝑊)))
3916, 38mpd 15 . 2 ((𝜑𝜓) → (𝐺𝐴) ∈ (𝐺𝑊))
4015, 39sseldd 3637 1 ((𝜑𝜓) → (𝐺𝐴) ∈ (1st ‘(𝑇𝑀)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  {crab 2945   ∖ cdif 3604   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  𝒫 cpw 4191  {csn 4210  ∪ cuni 4468  ∪ ciun 4552   ↦ cmpt 4762   × cxp 5141  ◡ccnv 5142  dom cdm 5143  ran crn 5144   ↾ cres 5145   “ cima 5146  Fun wfun 5920  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  0cc0 9974  1c1 9975   − cmin 10304   / cdiv 10722  ℕcn 11058  (,)cioo 12213  [,]cicc 12216  ...cfz 12364   ↾t crest 16128  topGenctg 16145   Cn ccn 21076  Homeochmeo 21604  IIcii 22725   CovMap ccvm 31363 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cn 21079  df-ii 22727 This theorem is referenced by:  cvmliftlem6  31398  cvmliftlem8  31400  cvmliftlem9  31401
 Copyright terms: Public domain W3C validator