![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem14 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 31619. Putting the results of cvmliftlem11 31615, cvmliftlem13 31616 and cvmliftmo 31604 together, we have that 𝐾 is a continuous function, satisfies 𝐹 ∘ 𝐾 = 𝐺 and 𝐾(0) = 𝑃, and is equal to any other function which also has these properties, so it follows that 𝐾 is the unique lift of 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem.q | ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) |
cvmliftlem.k | ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) |
Ref | Expression |
---|---|
cvmliftlem14 | ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
2 | cvmliftlem.b | . . . . 5 ⊢ 𝐵 = ∪ 𝐶 | |
3 | cvmliftlem.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | cvmliftlem.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
5 | cvmliftlem.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
6 | cvmliftlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
7 | cvmliftlem.e | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
8 | cvmliftlem.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
9 | cvmliftlem.t | . . . . 5 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
10 | cvmliftlem.a | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) | |
11 | cvmliftlem.l | . . . . 5 ⊢ 𝐿 = (topGen‘ran (,)) | |
12 | cvmliftlem.q | . . . . 5 ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) | |
13 | cvmliftlem.k | . . . . 5 ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cvmliftlem11 31615 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = 𝐺)) |
15 | 14 | simpld 482 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (II Cn 𝐶)) |
16 | 14 | simprd 483 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐾) = 𝐺) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cvmliftlem13 31616 | . . 3 ⊢ (𝜑 → (𝐾‘0) = 𝑃) |
18 | coeq2 5419 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (𝐹 ∘ 𝑓) = (𝐹 ∘ 𝐾)) | |
19 | 18 | eqeq1d 2773 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((𝐹 ∘ 𝑓) = 𝐺 ↔ (𝐹 ∘ 𝐾) = 𝐺)) |
20 | fveq1 6331 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (𝑓‘0) = (𝐾‘0)) | |
21 | 20 | eqeq1d 2773 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((𝑓‘0) = 𝑃 ↔ (𝐾‘0) = 𝑃)) |
22 | 19, 21 | anbi12d 616 | . . . 4 ⊢ (𝑓 = 𝐾 → (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ 𝐾) = 𝐺 ∧ (𝐾‘0) = 𝑃))) |
23 | 22 | rspcev 3460 | . . 3 ⊢ ((𝐾 ∈ (II Cn 𝐶) ∧ ((𝐹 ∘ 𝐾) = 𝐺 ∧ (𝐾‘0) = 𝑃)) → ∃𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
24 | 15, 16, 17, 23 | syl12anc 1474 | . 2 ⊢ (𝜑 → ∃𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
25 | iiuni 22904 | . . 3 ⊢ (0[,]1) = ∪ II | |
26 | iiconn 22910 | . . . 4 ⊢ II ∈ Conn | |
27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ Conn) |
28 | iinllyconn 31574 | . . . 4 ⊢ II ∈ 𝑛-Locally Conn | |
29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ 𝑛-Locally Conn) |
30 | 0elunit 12497 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
31 | 30 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0[,]1)) |
32 | 2, 25, 4, 27, 29, 31, 5, 6, 7 | cvmliftmo 31604 | . 2 ⊢ (𝜑 → ∃*𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
33 | reu5 3308 | . 2 ⊢ (∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ (∃𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ∧ ∃*𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))) | |
34 | 24, 32, 33 | sylanbrc 572 | 1 ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 ∃!wreu 3063 ∃*wrmo 3064 {crab 3065 Vcvv 3351 ∖ cdif 3720 ∪ cun 3721 ∩ cin 3722 ⊆ wss 3723 ∅c0 4063 𝒫 cpw 4297 {csn 4316 〈cop 4322 ∪ cuni 4574 ∪ ciun 4654 ↦ cmpt 4863 I cid 5156 × cxp 5247 ◡ccnv 5248 ran crn 5250 ↾ cres 5251 “ cima 5252 ∘ ccom 5253 ⟶wf 6027 ‘cfv 6031 ℩crio 6753 (class class class)co 6793 ↦ cmpt2 6795 1st c1st 7313 2nd c2nd 7314 0cc0 10138 1c1 10139 − cmin 10468 / cdiv 10886 ℕcn 11222 (,)cioo 12380 [,]cicc 12383 ...cfz 12533 seqcseq 13008 ↾t crest 16289 topGenctg 16306 Cn ccn 21249 Conncconn 21435 𝑛-Locally cnlly 21489 Homeochmeo 21777 IIcii 22898 CovMap ccvm 31575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-nei 21123 df-cn 21252 df-cnp 21253 df-conn 21436 df-lly 21490 df-nlly 21491 df-tx 21586 df-hmeo 21779 df-xms 22345 df-ms 22346 df-tms 22347 df-ii 22900 df-htpy 22989 df-phtpy 22990 df-phtpc 23011 df-pconn 31541 df-sconn 31542 df-cvm 31576 |
This theorem is referenced by: cvmliftlem15 31618 |
Copyright terms: Public domain | W3C validator |