Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem1 Structured version   Visualization version   GIF version

Theorem cvmliftlem1 31599
Description: Lemma for cvmlift 31613. In cvmliftlem15 31612, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇𝑀) is an even covering of 1st ‘(𝑇𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
Assertion
Ref Expression
cvmliftlem1 ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem1
StepHypRef Expression
1 relxp 5266 . . . . . 6 Rel ({𝑗} × (𝑆𝑗))
21rgenw 3072 . . . . 5 𝑗𝐽 Rel ({𝑗} × (𝑆𝑗))
3 reliun 5378 . . . . 5 (Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ ∀𝑗𝐽 Rel ({𝑗} × (𝑆𝑗)))
42, 3mpbir 221 . . . 4 Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗))
5 cvmliftlem.t . . . . . 6 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
65adantr 466 . . . . 5 ((𝜑𝜓) → 𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
7 cvmliftlem1.m . . . . 5 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
86, 7ffvelrnd 6503 . . . 4 ((𝜑𝜓) → (𝑇𝑀) ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
9 1st2nd 7362 . . . 4 ((Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ (𝑇𝑀) ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗))) → (𝑇𝑀) = ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩)
104, 8, 9sylancr 567 . . 3 ((𝜑𝜓) → (𝑇𝑀) = ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩)
1110, 8eqeltrrd 2850 . 2 ((𝜑𝜓) → ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
12 fveq2 6332 . . . 4 (𝑗 = (1st ‘(𝑇𝑀)) → (𝑆𝑗) = (𝑆‘(1st ‘(𝑇𝑀))))
1312opeliunxp2 5399 . . 3 (⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ ((1st ‘(𝑇𝑀)) ∈ 𝐽 ∧ (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀)))))
1413simprbi 478 . 2 (⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
1511, 14syl 17 1 ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wral 3060  {crab 3064  cdif 3718  cin 3720  wss 3721  c0 4061  𝒫 cpw 4295  {csn 4314  cop 4320   cuni 4572   ciun 4652  cmpt 4861   × cxp 5247  ccnv 5248  ran crn 5250  cres 5251  cima 5252  Rel wrel 5254  wf 6027  cfv 6031  (class class class)co 6792  1st c1st 7312  2nd c2nd 7313  0cc0 10137  1c1 10138  cmin 10467   / cdiv 10885  cn 11221  (,)cioo 12379  [,]cicc 12382  ...cfz 12532  t crest 16288  topGenctg 16305   Cn ccn 21248  Homeochmeo 21776  IIcii 22897   CovMap ccvm 31569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-1st 7314  df-2nd 7315
This theorem is referenced by:  cvmliftlem6  31604  cvmliftlem8  31606  cvmliftlem9  31607
  Copyright terms: Public domain W3C validator