Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem9 Structured version   Visualization version   GIF version

Theorem cvmlift2lem9 31596
 Description: Lemma for cvmlift2 31601. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2lem10.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem9.1 (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀)
cvmlift2lem9.2 (𝜑𝑇 ∈ (𝑆𝑀))
cvmlift2lem9.3 (𝜑𝑈 ∈ II)
cvmlift2lem9.4 (𝜑𝑉 ∈ II)
cvmlift2lem9.5 (𝜑 → (II ↾t 𝑈) ∈ Conn)
cvmlift2lem9.6 (𝜑 → (II ↾t 𝑉) ∈ Conn)
cvmlift2lem9.7 (𝜑𝑋𝑈)
cvmlift2lem9.8 (𝜑𝑌𝑉)
cvmlift2lem9.9 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐺𝑀))
cvmlift2lem9.10 (𝜑𝑍𝑉)
cvmlift2lem9.11 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶))
cvmlift2lem9.w 𝑊 = (𝑏𝑇 (𝑋𝐾𝑌) ∈ 𝑏)
Assertion
Ref Expression
cvmlift2lem9 (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧,𝐹   𝜑,𝑏,𝑓,𝑥,𝑦,𝑧   𝑀,𝑏,𝑐,𝑑,𝑘,𝑠,𝑥,𝑦,𝑧   𝑆,𝑏,𝑓,𝑥,𝑦,𝑧   𝐽,𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝑧,𝑈   𝐺,𝑏,𝑐,𝑓,𝑘,𝑥,𝑦,𝑧   𝑊,𝑐,𝑑   𝐻,𝑏,𝑐,𝑓,𝑥,𝑦,𝑧   𝑋,𝑏,𝑐,𝑑,𝑓,𝑘,𝑥,𝑦,𝑧   𝑧,𝑍   𝐶,𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧   𝑃,𝑓,𝑘,𝑥,𝑦,𝑧   𝐵,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧   𝑌,𝑏,𝑐,𝑑,𝑓,𝑘,𝑥,𝑦,𝑧   𝐾,𝑏,𝑐,𝑑,𝑓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑓,𝑘,𝑠)   𝑃(𝑠,𝑏,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑘)   𝑈(𝑥,𝑦,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐺(𝑠,𝑑)   𝐻(𝑘,𝑠,𝑑)   𝐾(𝑘,𝑠)   𝑀(𝑓)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑘,𝑠,𝑏)   𝑋(𝑠)   𝑌(𝑠)   𝑍(𝑥,𝑦,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift2lem9
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 iitop 22880 . . 3 II ∈ Top
3 iiuni 22881 . . 3 (0[,]1) = II
42, 2, 3, 3txunii 21594 . 2 ((0[,]1) × (0[,]1)) = (II ×t II)
5 cvmlift2lem10.s . 2 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
6 cvmlift2.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
7 cvmlift2.g . . 3 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
8 cvmlift2.p . . 3 (𝜑𝑃𝐵)
9 cvmlift2.i . . 3 (𝜑 → (𝐹𝑃) = (0𝐺0))
10 cvmlift2.h . . 3 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
11 cvmlift2.k . . 3 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
121, 6, 7, 8, 9, 10, 11cvmlift2lem5 31592 . 2 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
131, 6, 7, 8, 9, 10, 11cvmlift2lem7 31594 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
1413, 7eqeltrd 2835 . 2 (𝜑 → (𝐹𝐾) ∈ ((II ×t II) Cn 𝐽))
152, 2txtopi 21591 . . 3 (II ×t II) ∈ Top
1615a1i 11 . 2 (𝜑 → (II ×t II) ∈ Top)
17 cvmlift2lem9.3 . . . . 5 (𝜑𝑈 ∈ II)
18 elssuni 4615 . . . . . 6 (𝑈 ∈ II → 𝑈 II)
1918, 3syl6sseqr 3789 . . . . 5 (𝑈 ∈ II → 𝑈 ⊆ (0[,]1))
2017, 19syl 17 . . . 4 (𝜑𝑈 ⊆ (0[,]1))
21 cvmlift2lem9.7 . . . 4 (𝜑𝑋𝑈)
2220, 21sseldd 3741 . . 3 (𝜑𝑋 ∈ (0[,]1))
23 cvmlift2lem9.4 . . . . 5 (𝜑𝑉 ∈ II)
24 elssuni 4615 . . . . . 6 (𝑉 ∈ II → 𝑉 II)
2524, 3syl6sseqr 3789 . . . . 5 (𝑉 ∈ II → 𝑉 ⊆ (0[,]1))
2623, 25syl 17 . . . 4 (𝜑𝑉 ⊆ (0[,]1))
27 cvmlift2lem9.8 . . . 4 (𝜑𝑌𝑉)
2826, 27sseldd 3741 . . 3 (𝜑𝑌 ∈ (0[,]1))
29 opelxpi 5301 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
3022, 28, 29syl2anc 696 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
31 cvmlift2lem9.2 . 2 (𝜑𝑇 ∈ (𝑆𝑀))
3212, 22, 28fovrnd 6967 . . . 4 (𝜑 → (𝑋𝐾𝑌) ∈ 𝐵)
33 fvco3 6433 . . . . . . . 8 ((𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)))
3412, 30, 33syl2anc 696 . . . . . . 7 (𝜑 → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)))
3513fveq1d 6350 . . . . . . 7 (𝜑 → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐺‘⟨𝑋, 𝑌⟩))
3634, 35eqtr3d 2792 . . . . . 6 (𝜑 → (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)) = (𝐺‘⟨𝑋, 𝑌⟩))
37 df-ov 6812 . . . . . . 7 (𝑋𝐾𝑌) = (𝐾‘⟨𝑋, 𝑌⟩)
3837fveq2i 6351 . . . . . 6 (𝐹‘(𝑋𝐾𝑌)) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩))
39 df-ov 6812 . . . . . 6 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
4036, 38, 393eqtr4g 2815 . . . . 5 (𝜑 → (𝐹‘(𝑋𝐾𝑌)) = (𝑋𝐺𝑌))
41 cvmlift2lem9.1 . . . . 5 (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀)
4240, 41eqeltrd 2835 . . . 4 (𝜑 → (𝐹‘(𝑋𝐾𝑌)) ∈ 𝑀)
43 cvmlift2lem9.w . . . . 5 𝑊 = (𝑏𝑇 (𝑋𝐾𝑌) ∈ 𝑏)
445, 1, 43cvmsiota 31562 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑀) ∧ (𝑋𝐾𝑌) ∈ 𝐵 ∧ (𝐹‘(𝑋𝐾𝑌)) ∈ 𝑀)) → (𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊))
456, 31, 32, 42, 44syl13anc 1479 . . 3 (𝜑 → (𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊))
4637eleq1i 2826 . . . 4 ((𝑋𝐾𝑌) ∈ 𝑊 ↔ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊)
4746anbi2i 732 . . 3 ((𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊) ↔ (𝑊𝑇 ∧ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊))
4845, 47sylib 208 . 2 (𝜑 → (𝑊𝑇 ∧ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊))
49 xpss12 5277 . . 3 ((𝑈 ⊆ (0[,]1) ∧ 𝑉 ⊆ (0[,]1)) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
5020, 26, 49syl2anc 696 . 2 (𝜑 → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
51 snidg 4347 . . . . . . 7 (𝑚𝑈𝑚 ∈ {𝑚})
5251ad2antrl 766 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚 ∈ {𝑚})
53 simprr 813 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑛𝑉)
54 ovres 6961 . . . . . 6 ((𝑚 ∈ {𝑚} ∧ 𝑛𝑉) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) = (𝑚𝐾𝑛))
5552, 53, 54syl2anc 696 . . . . 5 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) = (𝑚𝐾𝑛))
56 eqid 2756 . . . . . . . 8 ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉))
572a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → II ∈ Top)
58 snex 5053 . . . . . . . . . . 11 {𝑚} ∈ V
5958a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ∈ V)
6023adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑉 ∈ II)
61 txrest 21632 . . . . . . . . . 10 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑚} ∈ V ∧ 𝑉 ∈ II)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ↾t {𝑚}) ×t (II ↾t 𝑉)))
6257, 57, 59, 60, 61syl22anc 1478 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ↾t {𝑚}) ×t (II ↾t 𝑉)))
63 iitopon 22879 . . . . . . . . . . . 12 II ∈ (TopOn‘(0[,]1))
6420sselda 3740 . . . . . . . . . . . . 13 ((𝜑𝑚𝑈) → 𝑚 ∈ (0[,]1))
6564adantrr 755 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚 ∈ (0[,]1))
66 restsn2 21173 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑚 ∈ (0[,]1)) → (II ↾t {𝑚}) = 𝒫 {𝑚})
6763, 65, 66sylancr 698 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t {𝑚}) = 𝒫 {𝑚})
68 pwsn 4576 . . . . . . . . . . . 12 𝒫 {𝑚} = {∅, {𝑚}}
69 indisconn 21419 . . . . . . . . . . . 12 {∅, {𝑚}} ∈ Conn
7068, 69eqeltri 2831 . . . . . . . . . . 11 𝒫 {𝑚} ∈ Conn
7167, 70syl6eqel 2843 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t {𝑚}) ∈ Conn)
72 cvmlift2lem9.6 . . . . . . . . . . 11 (𝜑 → (II ↾t 𝑉) ∈ Conn)
7372adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t 𝑉) ∈ Conn)
74 txconn 21690 . . . . . . . . . 10 (((II ↾t {𝑚}) ∈ Conn ∧ (II ↾t 𝑉) ∈ Conn) → ((II ↾t {𝑚}) ×t (II ↾t 𝑉)) ∈ Conn)
7571, 73, 74syl2anc 696 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ↾t {𝑚}) ×t (II ↾t 𝑉)) ∈ Conn)
7662, 75eqeltrd 2835 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) ∈ Conn)
771, 6, 7, 8, 9, 10, 11cvmlift2lem6 31593 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0[,]1)) → (𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶))
7865, 77syldan 488 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶))
7926adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑉 ⊆ (0[,]1))
80 xpss2 5281 . . . . . . . . . . . . 13 (𝑉 ⊆ (0[,]1) → ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)))
8179, 80syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)))
8265snssd 4481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ⊆ (0[,]1))
83 xpss1 5280 . . . . . . . . . . . . . 14 ({𝑚} ⊆ (0[,]1) → ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
8482, 83syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
854restuni 21164 . . . . . . . . . . . . 13 (((II ×t II) ∈ Top ∧ ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1))) → ({𝑚} × (0[,]1)) = ((II ×t II) ↾t ({𝑚} × (0[,]1))))
8615, 84, 85sylancr 698 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) = ((II ×t II) ↾t ({𝑚} × (0[,]1))))
8781, 86sseqtrd 3778 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑚} × (0[,]1))))
88 eqid 2756 . . . . . . . . . . . 12 ((II ×t II) ↾t ({𝑚} × (0[,]1))) = ((II ×t II) ↾t ({𝑚} × (0[,]1)))
8988cnrest 21287 . . . . . . . . . . 11 (((𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶) ∧ ({𝑚} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑚} × (0[,]1)))) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9078, 87, 89syl2anc 696 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9181resabs1d 5582 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) = (𝐾 ↾ ({𝑚} × 𝑉)))
9215a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ×t II) ∈ Top)
93 ovex 6837 . . . . . . . . . . . . . 14 (0[,]1) ∈ V
9458, 93xpex 7123 . . . . . . . . . . . . 13 ({𝑚} × (0[,]1)) ∈ V
9594a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) ∈ V)
96 restabs 21167 . . . . . . . . . . . 12 (((II ×t II) ∈ Top ∧ ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)) ∧ ({𝑚} × (0[,]1)) ∈ V) → (((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
9792, 81, 95, 96syl3anc 1477 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
9897oveq1d 6824 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶) = (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9990, 91, 983eltr3d 2849 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
100 cvmtop1 31545 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
1016, 100syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ Top)
102101adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝐶 ∈ Top)
1031toptopon 20920 . . . . . . . . . . 11 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
104102, 103sylib 208 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝐶 ∈ (TopOn‘𝐵))
105 df-ima 5275 . . . . . . . . . . 11 (𝐾 “ ({𝑚} × 𝑉)) = ran (𝐾 ↾ ({𝑚} × 𝑉))
106 simprl 811 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚𝑈)
107106snssd 4481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ⊆ 𝑈)
108 xpss1 5280 . . . . . . . . . . . . 13 ({𝑚} ⊆ 𝑈 → ({𝑚} × 𝑉) ⊆ (𝑈 × 𝑉))
109 imass2 5655 . . . . . . . . . . . . 13 (({𝑚} × 𝑉) ⊆ (𝑈 × 𝑉) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
110107, 108, 1093syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
111 cvmlift2lem9.9 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐺𝑀))
112 imaco 5797 . . . . . . . . . . . . . . . 16 ((𝐾𝐹) “ 𝑀) = (𝐾 “ (𝐹𝑀))
113 cnvco 5459 . . . . . . . . . . . . . . . . . 18 (𝐹𝐾) = (𝐾𝐹)
11413cnveqd 5449 . . . . . . . . . . . . . . . . . 18 (𝜑(𝐹𝐾) = 𝐺)
115113, 114syl5eqr 2804 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾𝐹) = 𝐺)
116115imaeq1d 5619 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾𝐹) “ 𝑀) = (𝐺𝑀))
117112, 116syl5eqr 2804 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 “ (𝐹𝑀)) = (𝐺𝑀))
118111, 117sseqtr4d 3779 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀)))
119 ffun 6205 . . . . . . . . . . . . . . . 16 (𝐾:((0[,]1) × (0[,]1))⟶𝐵 → Fun 𝐾)
12012, 119syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐾)
121 fdm 6208 . . . . . . . . . . . . . . . . 17 (𝐾:((0[,]1) × (0[,]1))⟶𝐵 → dom 𝐾 = ((0[,]1) × (0[,]1)))
12212, 121syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐾 = ((0[,]1) × (0[,]1)))
12350, 122sseqtr4d 3779 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × 𝑉) ⊆ dom 𝐾)
124 funimass3 6492 . . . . . . . . . . . . . . 15 ((Fun 𝐾 ∧ (𝑈 × 𝑉) ⊆ dom 𝐾) → ((𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀) ↔ (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀))))
125120, 123, 124syl2anc 696 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀) ↔ (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀))))
126118, 125mpbird 247 . . . . . . . . . . . . 13 (𝜑 → (𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀))
127126adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀))
128110, 127sstrd 3750 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀))
129105, 128syl5eqssr 3787 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ran (𝐾 ↾ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀))
130 cnvimass 5639 . . . . . . . . . . . 12 (𝐹𝑀) ⊆ dom 𝐹
131 cvmcn 31547 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
1326, 131syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
133 eqid 2756 . . . . . . . . . . . . . 14 𝐽 = 𝐽
1341, 133cnf 21248 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
135 fdm 6208 . . . . . . . . . . . . 13 (𝐹:𝐵 𝐽 → dom 𝐹 = 𝐵)
136132, 134, 1353syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐵)
137130, 136syl5sseq 3790 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ⊆ 𝐵)
138137adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐹𝑀) ⊆ 𝐵)
139 cnrest2 21288 . . . . . . . . . 10 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
140104, 129, 138, 139syl3anc 1477 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
14199, 140mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀))))
1425cvmsss 31552 . . . . . . . . . . . 12 (𝑇 ∈ (𝑆𝑀) → 𝑇𝐶)
14331, 142syl 17 . . . . . . . . . . 11 (𝜑𝑇𝐶)
14445simpld 477 . . . . . . . . . . 11 (𝜑𝑊𝑇)
145143, 144sseldd 3741 . . . . . . . . . 10 (𝜑𝑊𝐶)
146 elssuni 4615 . . . . . . . . . . . 12 (𝑊𝑇𝑊 𝑇)
147144, 146syl 17 . . . . . . . . . . 11 (𝜑𝑊 𝑇)
1485cvmsuni 31554 . . . . . . . . . . . 12 (𝑇 ∈ (𝑆𝑀) → 𝑇 = (𝐹𝑀))
14931, 148syl 17 . . . . . . . . . . 11 (𝜑 𝑇 = (𝐹𝑀))
150147, 149sseqtrd 3778 . . . . . . . . . 10 (𝜑𝑊 ⊆ (𝐹𝑀))
1515cvmsrcl 31549 . . . . . . . . . . . . 13 (𝑇 ∈ (𝑆𝑀) → 𝑀𝐽)
15231, 151syl 17 . . . . . . . . . . . 12 (𝜑𝑀𝐽)
153 cnima 21267 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝑀𝐽) → (𝐹𝑀) ∈ 𝐶)
154132, 152, 153syl2anc 696 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ∈ 𝐶)
155 restopn2 21179 . . . . . . . . . . 11 ((𝐶 ∈ Top ∧ (𝐹𝑀) ∈ 𝐶) → (𝑊 ∈ (𝐶t (𝐹𝑀)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝑀))))
156101, 154, 155syl2anc 696 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ (𝐶t (𝐹𝑀)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝑀))))
157145, 150, 156mpbir2and 995 . . . . . . . . 9 (𝜑𝑊 ∈ (𝐶t (𝐹𝑀)))
158157adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑊 ∈ (𝐶t (𝐹𝑀)))
1595cvmscld 31558 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑀) ∧ 𝑊𝑇) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
1606, 31, 144, 159syl3anc 1477 . . . . . . . . 9 (𝜑𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
161160adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
162 cvmlift2lem9.10 . . . . . . . . . . 11 (𝜑𝑍𝑉)
163162adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑍𝑉)
164 opelxpi 5301 . . . . . . . . . 10 ((𝑚 ∈ {𝑚} ∧ 𝑍𝑉) → ⟨𝑚, 𝑍⟩ ∈ ({𝑚} × 𝑉))
16552, 163, 164syl2anc 696 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ⟨𝑚, 𝑍⟩ ∈ ({𝑚} × 𝑉))
16681, 84sstrd 3750 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
1674restuni 21164 . . . . . . . . . 10 (((II ×t II) ∈ Top ∧ ({𝑚} × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → ({𝑚} × 𝑉) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
16815, 166, 167sylancr 698 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
169165, 168eleqtrd 2837 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ⟨𝑚, 𝑍⟩ ∈ ((II ×t II) ↾t ({𝑚} × 𝑉)))
170 df-ov 6812 . . . . . . . . . 10 (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩)
171 ovres 6961 . . . . . . . . . . . 12 ((𝑚 ∈ {𝑚} ∧ 𝑍𝑉) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚𝐾𝑍))
17252, 163, 171syl2anc 696 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚𝐾𝑍))
173 snidg 4347 . . . . . . . . . . . . . 14 (𝑍𝑉𝑍 ∈ {𝑍})
174162, 173syl 17 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ {𝑍})
175174adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑍 ∈ {𝑍})
176 ovres 6961 . . . . . . . . . . . 12 ((𝑚𝑈𝑍 ∈ {𝑍}) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑚𝐾𝑍))
177106, 175, 176syl2anc 696 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑚𝐾𝑍))
178172, 177eqtr4d 2793 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍))
179170, 178syl5eqr 2804 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩) = (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍))
180 eqid 2756 . . . . . . . . . . . . 13 ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ×t II) ↾t (𝑈 × {𝑍}))
1812a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → II ∈ Top)
182 snex 5053 . . . . . . . . . . . . . . . 16 {𝑍} ∈ V
183182a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑍} ∈ V)
184 txrest 21632 . . . . . . . . . . . . . . 15 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑈 ∈ II ∧ {𝑍} ∈ V)) → ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ↾t 𝑈) ×t (II ↾t {𝑍})))
185181, 181, 17, 183, 184syl22anc 1478 . . . . . . . . . . . . . 14 (𝜑 → ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ↾t 𝑈) ×t (II ↾t {𝑍})))
186 cvmlift2lem9.5 . . . . . . . . . . . . . . 15 (𝜑 → (II ↾t 𝑈) ∈ Conn)
18726, 162sseldd 3741 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ (0[,]1))
188 restsn2 21173 . . . . . . . . . . . . . . . . 17 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑍 ∈ (0[,]1)) → (II ↾t {𝑍}) = 𝒫 {𝑍})
18963, 187, 188sylancr 698 . . . . . . . . . . . . . . . 16 (𝜑 → (II ↾t {𝑍}) = 𝒫 {𝑍})
190 pwsn 4576 . . . . . . . . . . . . . . . . 17 𝒫 {𝑍} = {∅, {𝑍}}
191 indisconn 21419 . . . . . . . . . . . . . . . . 17 {∅, {𝑍}} ∈ Conn
192190, 191eqeltri 2831 . . . . . . . . . . . . . . . 16 𝒫 {𝑍} ∈ Conn
193189, 192syl6eqel 2843 . . . . . . . . . . . . . . 15 (𝜑 → (II ↾t {𝑍}) ∈ Conn)
194 txconn 21690 . . . . . . . . . . . . . . 15 (((II ↾t 𝑈) ∈ Conn ∧ (II ↾t {𝑍}) ∈ Conn) → ((II ↾t 𝑈) ×t (II ↾t {𝑍})) ∈ Conn)
195186, 193, 194syl2anc 696 . . . . . . . . . . . . . 14 (𝜑 → ((II ↾t 𝑈) ×t (II ↾t {𝑍})) ∈ Conn)
196185, 195eqeltrd 2835 . . . . . . . . . . . . 13 (𝜑 → ((II ×t II) ↾t (𝑈 × {𝑍})) ∈ Conn)
197 cvmlift2lem9.11 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶))
198101, 103sylib 208 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ (TopOn‘𝐵))
199 df-ima 5275 . . . . . . . . . . . . . . . 16 (𝐾 “ (𝑈 × {𝑍})) = ran (𝐾 ↾ (𝑈 × {𝑍}))
200162snssd 4481 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑍} ⊆ 𝑉)
201 xpss2 5281 . . . . . . . . . . . . . . . . . 18 ({𝑍} ⊆ 𝑉 → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
202 imass2 5655 . . . . . . . . . . . . . . . . . 18 ((𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉) → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐾 “ (𝑈 × 𝑉)))
203200, 201, 2023syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐾 “ (𝑈 × 𝑉)))
204203, 126sstrd 3750 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐹𝑀))
205199, 204syl5eqssr 3787 . . . . . . . . . . . . . . 15 (𝜑 → ran (𝐾 ↾ (𝑈 × {𝑍})) ⊆ (𝐹𝑀))
206 cnrest2 21288 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ (𝑈 × {𝑍})) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀)))))
207198, 205, 137, 206syl3anc 1477 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀)))))
208197, 207mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀))))
209 opelxpi 5301 . . . . . . . . . . . . . . 15 ((𝑋𝑈𝑍 ∈ {𝑍}) → ⟨𝑋, 𝑍⟩ ∈ (𝑈 × {𝑍}))
21021, 174, 209syl2anc 696 . . . . . . . . . . . . . 14 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ (𝑈 × {𝑍}))
211187snssd 4481 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑍} ⊆ (0[,]1))
212 xpss12 5277 . . . . . . . . . . . . . . . 16 ((𝑈 ⊆ (0[,]1) ∧ {𝑍} ⊆ (0[,]1)) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
21320, 211, 212syl2anc 696 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
2144restuni 21164 . . . . . . . . . . . . . . 15 (((II ×t II) ∈ Top ∧ (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1))) → (𝑈 × {𝑍}) = ((II ×t II) ↾t (𝑈 × {𝑍})))
21515, 213, 214sylancr 698 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 × {𝑍}) = ((II ×t II) ↾t (𝑈 × {𝑍})))
216210, 215eleqtrd 2837 . . . . . . . . . . . . 13 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ ((II ×t II) ↾t (𝑈 × {𝑍})))
217 df-ov 6812 . . . . . . . . . . . . . . 15 (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩)
218 ovres 6961 . . . . . . . . . . . . . . . . 17 ((𝑋𝑈𝑍 ∈ {𝑍}) → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋𝐾𝑍))
21921, 174, 218syl2anc 696 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋𝐾𝑍))
220 snidg 4347 . . . . . . . . . . . . . . . . . 18 (𝑋𝑈𝑋 ∈ {𝑋})
22121, 220syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ {𝑋})
222 ovres 6961 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ {𝑋} ∧ 𝑍𝑉) → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) = (𝑋𝐾𝑍))
223221, 162, 222syl2anc 696 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) = (𝑋𝐾𝑍))
224219, 223eqtr4d 2793 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍))
225217, 224syl5eqr 2804 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩) = (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍))
226 eqid 2756 . . . . . . . . . . . . . . . . 17 ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉))
227 snex 5053 . . . . . . . . . . . . . . . . . . . 20 {𝑋} ∈ V
228227a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑋} ∈ V)
229 txrest 21632 . . . . . . . . . . . . . . . . . . 19 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑋} ∈ V ∧ 𝑉 ∈ II)) → ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ↾t {𝑋}) ×t (II ↾t 𝑉)))
230181, 181, 228, 23, 229syl22anc 1478 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ↾t {𝑋}) ×t (II ↾t 𝑉)))
231 restsn2 21173 . . . . . . . . . . . . . . . . . . . . 21 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑋 ∈ (0[,]1)) → (II ↾t {𝑋}) = 𝒫 {𝑋})
23263, 22, 231sylancr 698 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (II ↾t {𝑋}) = 𝒫 {𝑋})
233 pwsn 4576 . . . . . . . . . . . . . . . . . . . . 21 𝒫 {𝑋} = {∅, {𝑋}}
234 indisconn 21419 . . . . . . . . . . . . . . . . . . . . 21 {∅, {𝑋}} ∈ Conn
235233, 234eqeltri 2831 . . . . . . . . . . . . . . . . . . . 20 𝒫 {𝑋} ∈ Conn
236232, 235syl6eqel 2843 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (II ↾t {𝑋}) ∈ Conn)
237 txconn 21690 . . . . . . . . . . . . . . . . . . 19 (((II ↾t {𝑋}) ∈ Conn ∧ (II ↾t 𝑉) ∈ Conn) → ((II ↾t {𝑋}) ×t (II ↾t 𝑉)) ∈ Conn)
238236, 72, 237syl2anc 696 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((II ↾t {𝑋}) ×t (II ↾t 𝑉)) ∈ Conn)
239230, 238eqeltrd 2835 . . . . . . . . . . . . . . . . 17 (𝜑 → ((II ×t II) ↾t ({𝑋} × 𝑉)) ∈ Conn)
2401, 6, 7, 8, 9, 10, 11cvmlift2lem6 31593 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
24122, 240mpdan 705 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
242 xpss2 5281 . . . . . . . . . . . . . . . . . . . . . 22 (𝑉 ⊆ (0[,]1) → ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)))
24323, 25, 2423syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)))
24422snssd 4481 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑋} ⊆ (0[,]1))
245 xpss1 5280 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑋} ⊆ (0[,]1) → ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
246244, 245syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
2474restuni 21164 . . . . . . . . . . . . . . . . . . . . . 22 (((II ×t II) ∈ Top ∧ ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1))) → ({𝑋} × (0[,]1)) = ((II ×t II) ↾t ({𝑋} × (0[,]1))))
24815, 246, 247sylancr 698 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × (0[,]1)) = ((II ×t II) ↾t ({𝑋} × (0[,]1))))
249243, 248sseqtrd 3778 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ({𝑋} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑋} × (0[,]1))))
250 eqid 2756 . . . . . . . . . . . . . . . . . . . . 21 ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II ×t II) ↾t ({𝑋} × (0[,]1)))
251250cnrest 21287 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶) ∧ ({𝑋} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑋} × (0[,]1)))) → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
252241, 249, 251syl2anc 696 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
253243resabs1d 5582 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) = (𝐾 ↾ ({𝑋} × 𝑉)))
254227, 93xpex 7123 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑋} × (0[,]1)) ∈ V
255254a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × (0[,]1)) ∈ V)
256 restabs 21167 . . . . . . . . . . . . . . . . . . . . 21 (((II ×t II) ∈ Top ∧ ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)) ∧ ({𝑋} × (0[,]1)) ∈ V) → (((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
25716, 243, 255, 256syl3anc 1477 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
258257oveq1d 6824 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶) = (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
259252, 253, 2583eltr3d 2849 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
260 df-ima 5275 . . . . . . . . . . . . . . . . . . . 20 (𝐾 “ ({𝑋} × 𝑉)) = ran (𝐾 ↾ ({𝑋} × 𝑉))
26121snssd 4481 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → {𝑋} ⊆ 𝑈)
262 xpss1 5280 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑋} ⊆ 𝑈 → ({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉))
263 imass2 5655 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉) → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
264261, 262, 2633syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
265264, 126sstrd 3750 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀))
266260, 265syl5eqssr 3787 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝐾 ↾ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀))
267 cnrest2 21288 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
268198, 266, 137, 267syl3anc 1477 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
269259, 268mpbid 222 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀))))
270 opelxpi 5301 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ {𝑋} ∧ 𝑌𝑉) → ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝑉))
271221, 27, 270syl2anc 696 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝑉))
272261, 262syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉))
273272, 50sstrd 3750 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ({𝑋} × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
2744restuni 21164 . . . . . . . . . . . . . . . . . . 19 (((II ×t II) ∈ Top ∧ ({𝑋} × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → ({𝑋} × 𝑉) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
27515, 273, 274sylancr 698 . . . . . . . . . . . . . . . . . 18 (𝜑 → ({𝑋} × 𝑉) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
276271, 275eleqtrd 2837 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((II ×t II) ↾t ({𝑋} × 𝑉)))
277 df-ov 6812 . . . . . . . . . . . . . . . . . . 19 (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩)
278 ovres 6961 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ {𝑋} ∧ 𝑌𝑉) → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = (𝑋𝐾𝑌))
279221, 27, 278syl2anc 696 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = (𝑋𝐾𝑌))
280277, 279syl5eqr 2804 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩) = (𝑋𝐾𝑌))
28145simprd 482 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝐾𝑌) ∈ 𝑊)
282280, 281eqeltrd 2835 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩) ∈ 𝑊)
283226, 239, 269, 157, 160, 276, 282conncn 21427 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)): ((II ×t II) ↾t ({𝑋} × 𝑉))⟶𝑊)
284275feq2d 6188 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉)):({𝑋} × 𝑉)⟶𝑊 ↔ (𝐾 ↾ ({𝑋} × 𝑉)): ((II ×t II) ↾t ({𝑋} × 𝑉))⟶𝑊))
285283, 284mpbird 247 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)):({𝑋} × 𝑉)⟶𝑊)
286285, 221, 162fovrnd 6967 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) ∈ 𝑊)
287225, 286eqeltrd 2835 . . . . . . . . . . . . 13 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩) ∈ 𝑊)
288180, 196, 208, 157, 160, 216, 287conncn 21427 . . . . . . . . . . . 12 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})): ((II ×t II) ↾t (𝑈 × {𝑍}))⟶𝑊)
289215feq2d 6188 . . . . . . . . . . . 12 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊 ↔ (𝐾 ↾ (𝑈 × {𝑍})): ((II ×t II) ↾t (𝑈 × {𝑍}))⟶𝑊))
290288, 289mpbird 247 . . . . . . . . . . 11 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊)
291290adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊)
292291, 106, 175fovrnd 6967 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) ∈ 𝑊)
293179, 292eqeltrd 2835 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩) ∈ 𝑊)
29456, 76, 141, 158, 161, 169, 293conncn 21427 . . . . . . 7 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)): ((II ×t II) ↾t ({𝑚} × 𝑉))⟶𝑊)
295168feq2d 6188 . . . . . . 7 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉)):({𝑚} × 𝑉)⟶𝑊 ↔ (𝐾 ↾ ({𝑚} × 𝑉)): ((II ×t II) ↾t ({𝑚} × 𝑉))⟶𝑊))
296294, 295mpbird 247 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)):({𝑚} × 𝑉)⟶𝑊)
297296, 52, 53fovrnd 6967 . . . . 5 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) ∈ 𝑊)
29855, 297eqeltrrd 2836 . . . 4 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚𝐾𝑛) ∈ 𝑊)
299298ralrimivva 3105 . . 3 (𝜑 → ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊)
300 funimassov 6972 . . . 4 ((Fun 𝐾 ∧ (𝑈 × 𝑉) ⊆ dom 𝐾) → ((𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊 ↔ ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊))
301120, 123, 300syl2anc 696 . . 3 (𝜑 → ((𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊 ↔ ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊))
302299, 301mpbird 247 . 2 (𝜑 → (𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊)
3031, 4, 5, 6, 12, 14, 16, 30, 31, 48, 50, 302cvmlift2lem9a 31588 1 (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1628   ∈ wcel 2135  ∀wral 3046  {crab 3050  Vcvv 3336   ∖ cdif 3708   ∩ cin 3710   ⊆ wss 3711  ∅c0 4054  𝒫 cpw 4298  {csn 4317  {cpr 4319  ⟨cop 4323  ∪ cuni 4584   ↦ cmpt 4877   × cxp 5260  ◡ccnv 5261  dom cdm 5262  ran crn 5263   ↾ cres 5264   “ cima 5265   ∘ ccom 5266  Fun wfun 6039  ⟶wf 6041  ‘cfv 6045  ℩crio 6769  (class class class)co 6809   ↦ cmpt2 6811  0cc0 10124  1c1 10125  [,]cicc 12367   ↾t crest 16279  Topctop 20896  TopOnctopon 20913  Clsdccld 21018   Cn ccn 21226  Conncconn 21412   ×t ctx 21561  Homeochmeo 21754  IIcii 22875   CovMap ccvm 31540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202  ax-addf 10203  ax-mulf 10204 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-iin 4671  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-of 7058  df-om 7227  df-1st 7329  df-2nd 7330  df-supp 7460  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-2o 7726  df-oadd 7729  df-er 7907  df-ec 7909  df-map 8021  df-ixp 8071  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-fsupp 8437  df-fi 8478  df-sup 8509  df-inf 8510  df-oi 8576  df-card 8951  df-cda 9178  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-7 11272  df-8 11273  df-9 11274  df-n0 11481  df-z 11566  df-dec 11682  df-uz 11876  df-q 11978  df-rp 12022  df-xneg 12135  df-xadd 12136  df-xmul 12137  df-ioo 12368  df-ico 12370  df-icc 12371  df-fz 12516  df-fzo 12656  df-fl 12783  df-seq 12992  df-exp 13051  df-hash 13308  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-clim 14414  df-sum 14612  df-struct 16057  df-ndx 16058  df-slot 16059  df-base 16061  df-sets 16062  df-ress 16063  df-plusg 16152  df-mulr 16153  df-starv 16154  df-sca 16155  df-vsca 16156  df-ip 16157  df-tset 16158  df-ple 16159  df-ds 16162  df-unif 16163  df-hom 16164  df-cco 16165  df-rest 16281  df-topn 16282  df-0g 16300  df-gsum 16301  df-topgen 16302  df-pt 16303  df-prds 16306  df-xrs 16360  df-qtop 16365  df-imas 16366  df-xps 16368  df-mre 16444  df-mrc 16445  df-acs 16447  df-mgm 17439  df-sgrp 17481  df-mnd 17492  df-submnd 17533  df-mulg 17738  df-cntz 17946  df-cmn 18391  df-psmet 19936  df-xmet 19937  df-met 19938  df-bl 19939  df-mopn 19940  df-cnfld 19945  df-top 20897  df-topon 20914  df-topsp 20935  df-bases 20948  df-cld 21021  df-ntr 21022  df-cls 21023  df-nei 21100  df-cn 21229  df-cnp 21230  df-cmp 21388  df-conn 21413  df-lly 21467  df-nlly 21468  df-tx 21563  df-hmeo 21756  df-xms 22322  df-ms 22323  df-tms 22324  df-ii 22877  df-htpy 22966  df-phtpy 22967  df-phtpc 22988  df-pconn 31506  df-sconn 31507  df-cvm 31541 This theorem is referenced by:  cvmlift2lem10  31597
 Copyright terms: Public domain W3C validator