Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem13 Structured version   Visualization version   GIF version

Theorem cvmlift2lem13 31596
Description: Lemma for cvmlift2 31597. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
Assertion
Ref Expression
cvmlift2lem13 (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐽,𝑔,𝑥,𝑦,𝑧   𝑓,𝐺,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑃,𝑓,𝑔,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑓,𝐾,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝐻(𝑔)

Proof of Theorem cvmlift2lem13
Dummy variables 𝑏 𝑐 𝑑 𝑢 𝑣 𝑎 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . 4 𝐵 = 𝐶
2 cvmlift2.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . . 4 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . . 4 (𝜑𝑃𝐵)
5 cvmlift2.i . . . 4 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . . 4 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . . 4 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
8 fveq2 6344 . . . . . 6 (𝑎 = 𝑧 → (((II ×t II) CnP 𝐶)‘𝑎) = (((II ×t II) CnP 𝐶)‘𝑧))
98eleq2d 2817 . . . . 5 (𝑎 = 𝑧 → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎) ↔ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
109cbvrabv 3331 . . . 4 {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
11 sneq 4323 . . . . . . 7 (𝑧 = 𝑏 → {𝑧} = {𝑏})
1211xpeq2d 5288 . . . . . 6 (𝑧 = 𝑏 → ((0[,]1) × {𝑧}) = ((0[,]1) × {𝑏}))
1312sseq1d 3765 . . . . 5 (𝑧 = 𝑏 → (((0[,]1) × {𝑧}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ ((0[,]1) × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
1413cbvrabv 3331 . . . 4 {𝑧 ∈ (0[,]1) ∣ ((0[,]1) × {𝑧}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}} = {𝑏 ∈ (0[,]1) ∣ ((0[,]1) × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}}
15 simpr 479 . . . . . . 7 ((𝑐 = 𝑟𝑑 = 𝑡) → 𝑑 = 𝑡)
1615eleq1d 2816 . . . . . 6 ((𝑐 = 𝑟𝑑 = 𝑡) → (𝑑 ∈ (0[,]1) ↔ 𝑡 ∈ (0[,]1)))
17 xpeq1 5272 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝑣 × {𝑏}) = (𝑢 × {𝑏}))
1817sseq1d 3765 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
19 xpeq1 5272 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝑣 × {𝑑}) = (𝑢 × {𝑑}))
2019sseq1d 3765 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
2118, 20bibi12d 334 . . . . . . . 8 (𝑣 = 𝑢 → (((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
2221cbvrexv 3303 . . . . . . 7 (∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑐})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
23 simpl 474 . . . . . . . . . 10 ((𝑐 = 𝑟𝑑 = 𝑡) → 𝑐 = 𝑟)
2423sneqd 4325 . . . . . . . . 9 ((𝑐 = 𝑟𝑑 = 𝑡) → {𝑐} = {𝑟})
2524fveq2d 6348 . . . . . . . 8 ((𝑐 = 𝑟𝑑 = 𝑡) → ((nei‘II)‘{𝑐}) = ((nei‘II)‘{𝑟}))
2615sneqd 4325 . . . . . . . . . . 11 ((𝑐 = 𝑟𝑑 = 𝑡) → {𝑑} = {𝑡})
2726xpeq2d 5288 . . . . . . . . . 10 ((𝑐 = 𝑟𝑑 = 𝑡) → (𝑢 × {𝑑}) = (𝑢 × {𝑡}))
2827sseq1d 3765 . . . . . . . . 9 ((𝑐 = 𝑟𝑑 = 𝑡) → ((𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))
2928bibi2d 331 . . . . . . . 8 ((𝑐 = 𝑟𝑑 = 𝑡) → (((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3025, 29rexeqbidv 3284 . . . . . . 7 ((𝑐 = 𝑟𝑑 = 𝑡) → (∃𝑢 ∈ ((nei‘II)‘{𝑐})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3122, 30syl5bb 272 . . . . . 6 ((𝑐 = 𝑟𝑑 = 𝑡) → (∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})))
3216, 31anbi12d 749 . . . . 5 ((𝑐 = 𝑟𝑑 = 𝑡) → ((𝑑 ∈ (0[,]1) ∧ ∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)})) ↔ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))))
3332cbvopabv 4866 . . . 4 {⟨𝑐, 𝑑⟩ ∣ (𝑑 ∈ (0[,]1) ∧ ∃𝑣 ∈ ((nei‘II)‘{𝑐})((𝑣 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑣 × {𝑑}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))} = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑏}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)} ↔ (𝑢 × {𝑡}) ⊆ {𝑎 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑎)}))}
341, 2, 3, 4, 5, 6, 7, 10, 14, 33cvmlift2lem12 31595 . . 3 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
351, 2, 3, 4, 5, 6, 7cvmlift2lem7 31590 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
36 0elunit 12475 . . . . 5 0 ∈ (0[,]1)
371, 2, 3, 4, 5, 6, 7cvmlift2lem8 31591 . . . . 5 ((𝜑 ∧ 0 ∈ (0[,]1)) → (0𝐾0) = (𝐻‘0))
3836, 37mpan2 709 . . . 4 (𝜑 → (0𝐾0) = (𝐻‘0))
391, 2, 3, 4, 5, 6cvmlift2lem2 31585 . . . . 5 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
4039simp3d 1138 . . . 4 (𝜑 → (𝐻‘0) = 𝑃)
4138, 40eqtrd 2786 . . 3 (𝜑 → (0𝐾0) = 𝑃)
42 coeq2 5428 . . . . . 6 (𝑔 = 𝐾 → (𝐹𝑔) = (𝐹𝐾))
4342eqeq1d 2754 . . . . 5 (𝑔 = 𝐾 → ((𝐹𝑔) = 𝐺 ↔ (𝐹𝐾) = 𝐺))
44 oveq 6811 . . . . . 6 (𝑔 = 𝐾 → (0𝑔0) = (0𝐾0))
4544eqeq1d 2754 . . . . 5 (𝑔 = 𝐾 → ((0𝑔0) = 𝑃 ↔ (0𝐾0) = 𝑃))
4643, 45anbi12d 749 . . . 4 (𝑔 = 𝐾 → (((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ((𝐹𝐾) = 𝐺 ∧ (0𝐾0) = 𝑃)))
4746rspcev 3441 . . 3 ((𝐾 ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹𝐾) = 𝐺 ∧ (0𝐾0) = 𝑃)) → ∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
4834, 35, 41, 47syl12anc 1471 . 2 (𝜑 → ∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
49 iitop 22876 . . . . 5 II ∈ Top
50 iiuni 22877 . . . . 5 (0[,]1) = II
5149, 49, 50, 50txunii 21590 . . . 4 ((0[,]1) × (0[,]1)) = (II ×t II)
52 iiconn 22883 . . . . . 6 II ∈ Conn
53 txconn 21686 . . . . . 6 ((II ∈ Conn ∧ II ∈ Conn) → (II ×t II) ∈ Conn)
5452, 52, 53mp2an 710 . . . . 5 (II ×t II) ∈ Conn
5554a1i 11 . . . 4 (𝜑 → (II ×t II) ∈ Conn)
56 iinllyconn 31535 . . . . . 6 II ∈ 𝑛-Locally Conn
57 txconn 21686 . . . . . . 7 ((𝑥 ∈ Conn ∧ 𝑦 ∈ Conn) → (𝑥 ×t 𝑦) ∈ Conn)
5857txnlly 21634 . . . . . 6 ((II ∈ 𝑛-Locally Conn ∧ II ∈ 𝑛-Locally Conn) → (II ×t II) ∈ 𝑛-Locally Conn)
5956, 56, 58mp2an 710 . . . . 5 (II ×t II) ∈ 𝑛-Locally Conn
6059a1i 11 . . . 4 (𝜑 → (II ×t II) ∈ 𝑛-Locally Conn)
61 opelxpi 5297 . . . . . 6 ((0 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1)))
6236, 36, 61mp2an 710 . . . . 5 ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1))
6362a1i 11 . . . 4 (𝜑 → ⟨0, 0⟩ ∈ ((0[,]1) × (0[,]1)))
64 df-ov 6808 . . . . 5 (0𝐺0) = (𝐺‘⟨0, 0⟩)
655, 64syl6eq 2802 . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘⟨0, 0⟩))
661, 51, 2, 55, 60, 63, 3, 4, 65cvmliftmo 31565 . . 3 (𝜑 → ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
67 df-ov 6808 . . . . . 6 (0𝑔0) = (𝑔‘⟨0, 0⟩)
6867eqeq1i 2757 . . . . 5 ((0𝑔0) = 𝑃 ↔ (𝑔‘⟨0, 0⟩) = 𝑃)
6968anbi2i 732 . . . 4 (((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
7069rmobii 3264 . . 3 (∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (𝑔‘⟨0, 0⟩) = 𝑃))
7166, 70sylibr 224 . 2 (𝜑 → ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
72 reu5 3290 . 2 (∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ↔ (∃𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃) ∧ ∃*𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃)))
7348, 71, 72sylanbrc 701 1 (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wrex 3043  ∃!wreu 3044  ∃*wrmo 3045  {crab 3046  wss 3707  {csn 4313  cop 4319   cuni 4580  {copab 4856  cmpt 4873   × cxp 5256  ccom 5262  cfv 6041  crio 6765  (class class class)co 6805  cmpt2 6807  0cc0 10120  1c1 10121  [,]cicc 12363  neicnei 21095   Cn ccn 21222   CnP ccnp 21223  Conncconn 21408  𝑛-Locally cnlly 21462   ×t ctx 21557  IIcii 22871   CovMap ccvm 31536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-ec 7905  df-map 8017  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-mulg 17734  df-cntz 17942  df-cmn 18387  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-cn 21225  df-cnp 21226  df-cmp 21384  df-conn 21409  df-lly 21463  df-nlly 21464  df-tx 21559  df-hmeo 21752  df-xms 22318  df-ms 22319  df-tms 22320  df-ii 22873  df-htpy 22962  df-phtpy 22963  df-phtpc 22984  df-pconn 31502  df-sconn 31503  df-cvm 31537
This theorem is referenced by:  cvmlift2  31597
  Copyright terms: Public domain W3C validator