![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlsupr3 | Structured version Visualization version GIF version |
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄, which can replace the superposition part of ishlat1 35154, (𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) ), with the simpler ∃𝑧 ∈ 𝐴(𝑥 ∨ 𝑧) = (𝑦 ∨ 𝑧) as shown in ishlat3N 35156. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlsupr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cvlsupr2.l | ⊢ ≤ = (le‘𝐾) |
cvlsupr2.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
cvlsupr3 | ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . . . 4 ⊢ (𝑃 ≠ 𝑄 ↔ ¬ 𝑃 = 𝑄) | |
2 | 1 | imbi1i 338 | . . 3 ⊢ ((𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
3 | oveq1 6799 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
4 | 3 | biantrur 514 | . . 3 ⊢ ((¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ ((𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))) |
5 | pm4.83 1006 | . . 3 ⊢ (((𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (¬ 𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
6 | 2, 4, 5 | 3bitrri 287 | . 2 ⊢ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
7 | cvlsupr2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | cvlsupr2.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | cvlsupr2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
10 | 7, 8, 9 | cvlsupr2 35145 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
11 | 10 | 3expia 1113 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 ≠ 𝑄 → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
12 | 11 | pm5.74d 262 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
13 | 6, 12 | syl5bb 272 | 1 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 lecple 16155 joincjn 17151 Atomscatm 35065 CvLatclc 35067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-preset 17135 df-poset 17153 df-plt 17165 df-lub 17181 df-glb 17182 df-join 17183 df-meet 17184 df-p0 17246 df-lat 17253 df-covers 35068 df-ats 35069 df-atl 35100 df-cvlat 35124 |
This theorem is referenced by: ishlat3N 35156 hlsupr2 35188 |
Copyright terms: Public domain | W3C validator |