MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgrat Structured version   Visualization version   GIF version

Theorem cvgrat 14659
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. Equivalent to first part of Exercise 4 of [Gleason] p. 182. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
cvgrat.1 𝑍 = (ℤ𝑀)
cvgrat.2 𝑊 = (ℤ𝑁)
cvgrat.3 (𝜑𝐴 ∈ ℝ)
cvgrat.4 (𝜑𝐴 < 1)
cvgrat.5 (𝜑𝑁𝑍)
cvgrat.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgrat.7 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgrat (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍

Proof of Theorem cvgrat
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cvgrat.2 . . 3 𝑊 = (ℤ𝑁)
2 cvgrat.5 . . . . . . 7 (𝜑𝑁𝑍)
3 cvgrat.1 . . . . . . 7 𝑍 = (ℤ𝑀)
42, 3syl6eleq 2740 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 11735 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
7 uzid 11740 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
86, 7syl 17 . . . 4 (𝜑𝑁 ∈ (ℤ𝑁))
98, 1syl6eleqr 2741 . . 3 (𝜑𝑁𝑊)
10 oveq1 6697 . . . . . . 7 (𝑛 = 𝑘 → (𝑛𝑁) = (𝑘𝑁))
1110oveq2d 6706 . . . . . 6 (𝑛 = 𝑘 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
12 eqid 2651 . . . . . 6 (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))
13 ovex 6718 . . . . . 6 (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ V
1411, 12, 13fvmpt 6321 . . . . 5 (𝑘𝑊 → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
1514adantl 481 . . . 4 ((𝜑𝑘𝑊) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
16 0re 10078 . . . . . . 7 0 ∈ ℝ
17 cvgrat.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
18 ifcl 4163 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
1916, 17, 18sylancr 696 . . . . . 6 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
2019adantr 480 . . . . 5 ((𝜑𝑘𝑊) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
21 simpr 476 . . . . . . 7 ((𝜑𝑘𝑊) → 𝑘𝑊)
2221, 1syl6eleq 2740 . . . . . 6 ((𝜑𝑘𝑊) → 𝑘 ∈ (ℤ𝑁))
23 uznn0sub 11757 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → (𝑘𝑁) ∈ ℕ0)
2422, 23syl 17 . . . . 5 ((𝜑𝑘𝑊) → (𝑘𝑁) ∈ ℕ0)
2520, 24reexpcld 13065 . . . 4 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ ℝ)
2615, 25eqeltrd 2730 . . 3 ((𝜑𝑘𝑊) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) ∈ ℝ)
27 uzss 11746 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
284, 27syl 17 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
2928, 1, 33sstr4g 3679 . . . . 5 (𝜑𝑊𝑍)
3029sselda 3636 . . . 4 ((𝜑𝑘𝑊) → 𝑘𝑍)
31 cvgrat.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3230, 31syldan 486 . . 3 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
3323adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝑁) ∈ ℕ0)
34 oveq2 6698 . . . . . . . . 9 (𝑛 = (𝑘𝑁) → (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
35 eqid 2651 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))
3634, 35, 13fvmpt 6321 . . . . . . . 8 ((𝑘𝑁) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
3733, 36syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
386zcnd 11521 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
39 eluzelz 11735 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℤ)
4039zcnd 11521 . . . . . . . 8 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℂ)
41 nn0ex 11336 . . . . . . . . . 10 0 ∈ V
4241mptex 6527 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) ∈ V
4342shftval 13858 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘) = ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)))
4438, 40, 43syl2an 493 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘) = ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)))
45 simpr 476 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑁))
4645, 1syl6eleqr 2741 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑊)
4746, 14syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
4837, 44, 473eqtr4rd 2696 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘))
496, 48seqfeq 12866 . . . . 5 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) = seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)))
5042seqshft 13869 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)) = (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
516, 6, 50syl2anc 694 . . . . 5 (𝜑 → seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)) = (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5238subidd 10418 . . . . . . 7 (𝜑 → (𝑁𝑁) = 0)
5352seqeq1d 12847 . . . . . 6 (𝜑 → seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) = seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))))
5453oveq1d 6705 . . . . 5 (𝜑 → (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5549, 51, 543eqtrd 2689 . . . 4 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5619recnd 10106 . . . . . . 7 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℂ)
57 max2 12056 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
5817, 16, 57sylancl 695 . . . . . . . . 9 (𝜑 → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
5919, 58absidd 14205 . . . . . . . 8 (𝜑 → (abs‘if(𝐴 ≤ 0, 0, 𝐴)) = if(𝐴 ≤ 0, 0, 𝐴))
60 0lt1 10588 . . . . . . . . 9 0 < 1
61 cvgrat.4 . . . . . . . . 9 (𝜑𝐴 < 1)
62 breq1 4688 . . . . . . . . . 10 (0 = if(𝐴 ≤ 0, 0, 𝐴) → (0 < 1 ↔ if(𝐴 ≤ 0, 0, 𝐴) < 1))
63 breq1 4688 . . . . . . . . . 10 (𝐴 = if(𝐴 ≤ 0, 0, 𝐴) → (𝐴 < 1 ↔ if(𝐴 ≤ 0, 0, 𝐴) < 1))
6462, 63ifboth 4157 . . . . . . . . 9 ((0 < 1 ∧ 𝐴 < 1) → if(𝐴 ≤ 0, 0, 𝐴) < 1)
6560, 61, 64sylancr 696 . . . . . . . 8 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) < 1)
6659, 65eqbrtrd 4707 . . . . . . 7 (𝜑 → (abs‘if(𝐴 ≤ 0, 0, 𝐴)) < 1)
67 oveq2 6698 . . . . . . . . 9 (𝑛 = 𝑘 → (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
68 ovex 6718 . . . . . . . . 9 (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘) ∈ V
6967, 35, 68fvmpt 6321 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
7069adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
7156, 66, 70geolim 14645 . . . . . 6 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))))
72 seqex 12843 . . . . . . 7 seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ∈ V
73 climshft 14351 . . . . . . 7 ((𝑁 ∈ ℤ ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ∈ V) → ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴)))))
746, 72, 73sylancl 695 . . . . . 6 (𝜑 → ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴)))))
7571, 74mpbird 247 . . . . 5 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))))
76 ovex 6718 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ V
77 ovex 6718 . . . . . 6 (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ∈ V
7876, 77breldm 5361 . . . . 5 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ dom ⇝ )
7975, 78syl 17 . . . 4 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ dom ⇝ )
8055, 79eqeltrd 2730 . . 3 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ∈ dom ⇝ )
8131ralrimiva 2995 . . . . 5 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
82 fveq2 6229 . . . . . . 7 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
8382eleq1d 2715 . . . . . 6 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑁) ∈ ℂ))
8483rspcv 3336 . . . . 5 (𝑁𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (𝐹𝑁) ∈ ℂ))
852, 81, 84sylc 65 . . . 4 (𝜑 → (𝐹𝑁) ∈ ℂ)
8685abscld 14219 . . 3 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℝ)
87 fveq2 6229 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
8887fveq2d 6233 . . . . . . . 8 (𝑛 = 𝑁 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑁)))
89 oveq1 6697 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑁) = (𝑁𝑁))
9089oveq2d 6706 . . . . . . . . 9 (𝑛 = 𝑁 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)))
9190oveq2d 6706 . . . . . . . 8 (𝑛 = 𝑁 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))
9288, 91breq12d 4698 . . . . . . 7 (𝑛 = 𝑁 → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)))))
9392imbi2d 329 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))))
94 fveq2 6229 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
9594fveq2d 6233 . . . . . . . 8 (𝑛 = 𝑘 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑘)))
9611oveq2d 6706 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
9795, 96breq12d 4698 . . . . . . 7 (𝑛 = 𝑘 → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
9897imbi2d 329 . . . . . 6 (𝑛 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
99 fveq2 6229 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
10099fveq2d 6233 . . . . . . . 8 (𝑛 = (𝑘 + 1) → (abs‘(𝐹𝑛)) = (abs‘(𝐹‘(𝑘 + 1))))
101 oveq1 6697 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (𝑛𝑁) = ((𝑘 + 1) − 𝑁))
102101oveq2d 6706 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))
103102oveq2d 6706 . . . . . . . 8 (𝑛 = (𝑘 + 1) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
104100, 103breq12d 4698 . . . . . . 7 (𝑛 = (𝑘 + 1) → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
105104imbi2d 329 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
10686leidd 10632 . . . . . . . 8 (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))
10752oveq2d 6706 . . . . . . . . . . 11 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑0))
10856exp0d 13042 . . . . . . . . . . 11 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑0) = 1)
109107, 108eqtrd 2685 . . . . . . . . . 10 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)) = 1)
110109oveq2d 6706 . . . . . . . . 9 (𝜑 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))) = ((abs‘(𝐹𝑁)) · 1))
11186recnd 10106 . . . . . . . . . 10 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℂ)
112111mulid1d 10095 . . . . . . . . 9 (𝜑 → ((abs‘(𝐹𝑁)) · 1) = (abs‘(𝐹𝑁)))
113110, 112eqtrd 2685 . . . . . . . 8 (𝜑 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))) = (abs‘(𝐹𝑁)))
114106, 113breqtrrd 4713 . . . . . . 7 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))
115114a1i 11 . . . . . 6 (𝑁 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)))))
11632abscld 14219 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ ℝ)
11786adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ∈ ℝ)
118117, 25remulcld 10108 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ)
11958adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
120 lemul2a 10916 . . . . . . . . . . . . 13 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ ∧ 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
121120ex 449 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ ∧ 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
122116, 118, 20, 119, 121syl112anc 1370 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
12356adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℂ)
124111adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ∈ ℂ)
12525recnd 10106 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ ℂ)
126123, 124, 125mul12d 10283 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
127123, 24expp1d 13049 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘𝑁) + 1)) = ((if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) · if(𝐴 ≤ 0, 0, 𝐴)))
12840, 1eleq2s 2748 . . . . . . . . . . . . . . . . 17 (𝑘𝑊𝑘 ∈ ℂ)
129 ax-1cn 10032 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
130 addsub 10330 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
131129, 130mp3an2 1452 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
132128, 38, 131syl2anr 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
133132oveq2d 6706 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘𝑁) + 1)))
134123, 125mulcomd 10099 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) = ((if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) · if(𝐴 ≤ 0, 0, 𝐴)))
135127, 133, 1343eqtr4rd 2696 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))
136135oveq2d 6706 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
137126, 136eqtrd 2685 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
138137breq2d 4697 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → ((if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) ↔ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
139122, 138sylibd 229 . . . . . . . . . 10 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
1401peano2uzs 11780 . . . . . . . . . . . . . . 15 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
14129sselda 3636 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝑘 + 1) ∈ 𝑍)
142140, 141sylan2 490 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (𝑘 + 1) ∈ 𝑍)
143 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
144143eleq1d 2715 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
145144cbvralv 3201 . . . . . . . . . . . . . . . 16 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
14681, 145sylib 208 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
147146adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
14899eleq1d 2715 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
149148rspcv 3336 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ 𝑍 → (∀𝑛𝑍 (𝐹𝑛) ∈ ℂ → (𝐹‘(𝑘 + 1)) ∈ ℂ))
150142, 147, 149sylc 65 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
151150abscld 14219 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
15217adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 𝐴 ∈ ℝ)
153152, 116remulcld 10108 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
15420, 116remulcld 10108 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∈ ℝ)
155 cvgrat.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
15632absge0d 14227 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 0 ≤ (abs‘(𝐹𝑘)))
157 max1 12054 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
15817, 16, 157sylancl 695 . . . . . . . . . . . . . 14 (𝜑𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
159158adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
160152, 20, 116, 156, 159lemul1ad 11001 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))))
161151, 153, 154, 155, 160letrd 10232 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))))
162 peano2uz 11779 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑁) → (𝑘 + 1) ∈ (ℤ𝑁))
16322, 162syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (𝑘 + 1) ∈ (ℤ𝑁))
164 uznn0sub 11757 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ (ℤ𝑁) → ((𝑘 + 1) − 𝑁) ∈ ℕ0)
165163, 164syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → ((𝑘 + 1) − 𝑁) ∈ ℕ0)
16620, 165reexpcld 13065 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)) ∈ ℝ)
167117, 166remulcld 10108 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) ∈ ℝ)
168 letr 10169 . . . . . . . . . . . 12 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
169151, 154, 167, 168syl3anc 1366 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
170161, 169mpand 711 . . . . . . . . . 10 ((𝜑𝑘𝑊) → ((if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
171139, 170syld 47 . . . . . . . . 9 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
17246, 171syldan 486 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
173172expcom 450 . . . . . . 7 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
174173a2d 29 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
17593, 98, 105, 98, 115, 174uzind4 11784 . . . . 5 (𝑘 ∈ (ℤ𝑁) → (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
176175impcom 445 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
17747oveq2d 6706 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑁)) · ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘)) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
178176, 177breqtrrd 4713 . . 3 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘)))
1791, 9, 26, 32, 80, 86, 178cvgcmpce 14594 . 2 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
1803, 2, 31iserex 14431 . 2 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
181179, 180mpbird 247 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  wss 3607  ifcif 4119   class class class wbr 4685  cmpt 4762  dom cdm 5143  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  0cn0 11330  cz 11415  cuz 11725  seqcseq 12841  cexp 12900   shift cshi 13850  abscabs 14018  cli 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461
This theorem is referenced by:  efcllem  14852  cvgdvgrat  38829
  Copyright terms: Public domain W3C validator