![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrexilem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for cusgrexi 26574. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
cusgrexilem2 | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 471 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
2 | eldifi 3883 | . . . 4 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛 ∈ 𝑉) | |
3 | prelpwi 5043 | . . . 4 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → {𝑣, 𝑛} ∈ 𝒫 𝑉) | |
4 | 1, 2, 3 | syl2an 583 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ 𝒫 𝑉) |
5 | eldifsni 4457 | . . . . . 6 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛 ≠ 𝑣) | |
6 | 5 | necomd 2998 | . . . . 5 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑣 ≠ 𝑛) |
7 | 6 | adantl 467 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑣 ≠ 𝑛) |
8 | hashprg 13384 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝑣 ≠ 𝑛 ↔ (♯‘{𝑣, 𝑛}) = 2)) | |
9 | 1, 2, 8 | syl2an 583 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑣 ≠ 𝑛 ↔ (♯‘{𝑣, 𝑛}) = 2)) |
10 | 7, 9 | mpbid 222 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (♯‘{𝑣, 𝑛}) = 2) |
11 | fveq2 6332 | . . . . 5 ⊢ (𝑥 = {𝑣, 𝑛} → (♯‘𝑥) = (♯‘{𝑣, 𝑛})) | |
12 | 11 | eqeq1d 2773 | . . . 4 ⊢ (𝑥 = {𝑣, 𝑛} → ((♯‘𝑥) = 2 ↔ (♯‘{𝑣, 𝑛}) = 2)) |
13 | rnresi 5620 | . . . . 5 ⊢ ran ( I ↾ 𝑃) = 𝑃 | |
14 | usgrexi.p | . . . . 5 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
15 | 13, 14 | eqtri 2793 | . . . 4 ⊢ ran ( I ↾ 𝑃) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
16 | 12, 15 | elrab2 3518 | . . 3 ⊢ ({𝑣, 𝑛} ∈ ran ( I ↾ 𝑃) ↔ ({𝑣, 𝑛} ∈ 𝒫 𝑉 ∧ (♯‘{𝑣, 𝑛}) = 2)) |
17 | 4, 10, 16 | sylanbrc 572 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ ran ( I ↾ 𝑃)) |
18 | sseq2 3776 | . . 3 ⊢ (𝑒 = {𝑣, 𝑛} → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛})) | |
19 | 18 | adantl 467 | . 2 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) ∧ 𝑒 = {𝑣, 𝑛}) → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛})) |
20 | ssid 3773 | . . 3 ⊢ {𝑣, 𝑛} ⊆ {𝑣, 𝑛} | |
21 | 20 | a1i 11 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ⊆ {𝑣, 𝑛}) |
22 | 17, 19, 21 | rspcedvd 3467 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∃wrex 3062 {crab 3065 ∖ cdif 3720 ⊆ wss 3723 𝒫 cpw 4297 {csn 4316 {cpr 4318 I cid 5156 ran crn 5250 ↾ cres 5251 ‘cfv 6031 2c2 11272 ♯chash 13321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-hash 13322 |
This theorem is referenced by: cusgrexi 26574 structtocusgr 26577 |
Copyright terms: Public domain | W3C validator |