MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrexilem1 Structured version   Visualization version   GIF version

Theorem cusgrexilem1 26566
Description: Lemma 1 for cusgrexi 26570. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
cusgrexilem1 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)

Proof of Theorem cusgrexilem1
StepHypRef Expression
1 usgrexi.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
2 pwexg 4999 . . 3 (𝑉𝑊 → 𝒫 𝑉 ∈ V)
31, 2rabexd 4965 . 2 (𝑉𝑊𝑃 ∈ V)
4 resiexg 7268 . 2 (𝑃 ∈ V → ( I ↾ 𝑃) ∈ V)
53, 4syl 17 1 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340  𝒫 cpw 4302   I cid 5173  cres 5268  cfv 6049  2c2 11282  chash 13331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-res 5278
This theorem is referenced by:  usgrexi  26568  cusgrexi  26570  cusgrexg  26571  structtousgr  26572  structtocusgr  26573
  Copyright terms: Public domain W3C validator