MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgr3vnbpr Structured version   Visualization version   GIF version

Theorem cusgr3vnbpr 26567
Description: The neighbors of a vertex in a simple graph with three elements are unordered pairs of the other vertices if and only if the graph is complete. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 5-Nov-2020.)
Hypotheses
Ref Expression
cplgr3v.e 𝐸 = (Edg‘𝐺)
cplgr3v.t (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}
cplgr3v.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgr3vnbpr (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑦,𝑋   𝑦,𝑌   𝑦,𝑍
Allowed substitution hints:   𝑋(𝑥,𝑧)   𝑌(𝑥,𝑧)   𝑍(𝑥,𝑧)

Proof of Theorem cusgr3vnbpr
StepHypRef Expression
1 usgrupgr 26299 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
2 cplgr3v.e . . . 4 𝐸 = (Edg‘𝐺)
3 cplgr3v.t . . . 4 (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}
42, 3cplgr3v 26566 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
51, 4syl3an2 1167 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
6 cplgr3v.v . . 3 𝑉 = (Vtx‘𝐺)
7 simp2 1131 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐺 ∈ USGraph)
86, 3eqtri 2793 . . . 4 𝑉 = {𝐴, 𝐵, 𝐶}
98a1i 11 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑉 = {𝐴, 𝐵, 𝐶})
10 simp1 1130 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴𝑋𝐵𝑌𝐶𝑍))
11 simp3 1132 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴𝐵𝐴𝐶𝐵𝐶))
126, 2, 7, 9, 10, 11nb3grpr 26507 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
135, 12bitrd 268 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ USGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  cdif 3720  {csn 4317  {cpr 4319  {ctp 4321  cfv 6030  (class class class)co 6796  Vtxcvtx 26095  Edgcedg 26160  UPGraphcupgr 26196  USGraphcusgr 26266   NeighbVtx cnbgr 26447  ComplGraphccplgr 26539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-xnn0 11571  df-z 11585  df-uz 11894  df-fz 12534  df-hash 13322  df-edg 26161  df-upgr 26198  df-umgr 26199  df-uspgr 26267  df-usgr 26268  df-nbgr 26448  df-uvtx 26511  df-cplgr 26541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator