![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curry2val | Structured version Visualization version GIF version |
Description: The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
curry2.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2val | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curry2.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
2 | 1 | curry2 7317 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
3 | 2 | fveq1d 6231 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷)) |
4 | eqid 2651 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) | |
5 | 4 | dmmptss 5669 | . . . . . . . . . 10 ⊢ dom (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) ⊆ 𝐴 |
6 | 5 | sseli 3632 | . . . . . . . . 9 ⊢ (𝐷 ∈ dom (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) → 𝐷 ∈ 𝐴) |
7 | 6 | con3i 150 | . . . . . . . 8 ⊢ (¬ 𝐷 ∈ 𝐴 → ¬ 𝐷 ∈ dom (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
8 | ndmfv 6256 | . . . . . . . 8 ⊢ (¬ 𝐷 ∈ dom (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) |
10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅) |
11 | fndm 6028 | . . . . . . 7 ⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) | |
12 | simpl 472 | . . . . . . . 8 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 𝐷 ∈ 𝐴) | |
13 | 12 | con3i 150 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ 𝐴 → ¬ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |
14 | ndmovg 6859 | . . . . . . 7 ⊢ ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐷𝐹𝐶) = ∅) | |
15 | 11, 13, 14 | syl2an 493 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → (𝐷𝐹𝐶) = ∅) |
16 | 10, 15 | eqtr4d 2688 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
17 | 16 | ex 449 | . . . 4 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))) |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (¬ 𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))) |
19 | oveq1 6697 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝑥𝐹𝐶) = (𝐷𝐹𝐶)) | |
20 | ovex 6718 | . . . 4 ⊢ (𝐷𝐹𝐶) ∈ V | |
21 | 19, 4, 20 | fvmpt 6321 | . . 3 ⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
22 | 18, 21 | pm2.61d2 172 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)) |
23 | 3, 22 | eqtrd 2685 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝐷) = (𝐷𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 {csn 4210 ↦ cmpt 4762 × cxp 5141 ◡ccnv 5142 dom cdm 5143 ↾ cres 5145 ∘ ccom 5147 Fn wfn 5921 ‘cfv 5926 (class class class)co 6690 1st c1st 7208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-1st 7210 df-2nd 7211 |
This theorem is referenced by: curry2ima 29614 |
Copyright terms: Public domain | W3C validator |