![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > curry2ima | Structured version Visualization version GIF version |
Description: The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
Ref | Expression |
---|---|
curry2ima.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2ima | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1130 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐹 Fn (𝐴 × 𝐵)) | |
2 | dffn2 6186 | . . . . . 6 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V) | |
3 | 1, 2 | sylib 208 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐹:(𝐴 × 𝐵)⟶V) |
4 | simp2 1131 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐶 ∈ 𝐵) | |
5 | curry2ima.1 | . . . . . 6 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
6 | 5 | curry2f 7428 | . . . . 5 ⊢ ((𝐹:(𝐴 × 𝐵)⟶V ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶V) |
7 | 3, 4, 6 | syl2anc 573 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐺:𝐴⟶V) |
8 | 7 | ffund 6188 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → Fun 𝐺) |
9 | simp3 1132 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐷 ⊆ 𝐴) | |
10 | 7 | fdmd 6193 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → dom 𝐺 = 𝐴) |
11 | 9, 10 | sseqtr4d 3791 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐷 ⊆ dom 𝐺) |
12 | dfimafn 6389 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐷 ⊆ dom 𝐺) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦}) | |
13 | 8, 11, 12 | syl2anc 573 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦}) |
14 | 5 | curry2val 7429 | . . . . . . 7 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
15 | 14 | 3adant3 1126 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
16 | 15 | eqeq1d 2773 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ (𝑥𝐹𝐶) = 𝑦)) |
17 | eqcom 2778 | . . . . 5 ⊢ ((𝑥𝐹𝐶) = 𝑦 ↔ 𝑦 = (𝑥𝐹𝐶)) | |
18 | 16, 17 | syl6bb 276 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ 𝑦 = (𝑥𝐹𝐶))) |
19 | 18 | rexbidv 3200 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶))) |
20 | 19 | abbidv 2890 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
21 | 13, 20 | eqtrd 2805 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 {cab 2757 ∃wrex 3062 Vcvv 3351 ⊆ wss 3723 {csn 4317 × cxp 5248 ◡ccnv 5249 dom cdm 5250 ↾ cres 5252 “ cima 5253 ∘ ccom 5254 Fun wfun 6024 Fn wfn 6025 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 1st c1st 7317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-1st 7319 df-2nd 7320 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |