![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curry2f | Structured version Visualization version GIF version |
Description: Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
curry2.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2f | ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovrn 6961 | . . . . 5 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝑥𝐹𝐶) ∈ 𝐷) | |
2 | 1 | 3com23 1120 | . . . 4 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝐶) ∈ 𝐷) |
3 | 2 | 3expa 1111 | . . 3 ⊢ (((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝐶) ∈ 𝐷) |
4 | eqid 2752 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) | |
5 | 3, 4 | fmptd 6540 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)):𝐴⟶𝐷) |
6 | ffn 6198 | . . . 4 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐷 → 𝐹 Fn (𝐴 × 𝐵)) | |
7 | curry2.1 | . . . . 5 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
8 | 7 | curry2 7432 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
9 | 6, 8 | sylan 489 | . . 3 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
10 | 9 | feq1d 6183 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → (𝐺:𝐴⟶𝐷 ↔ (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)):𝐴⟶𝐷)) |
11 | 5, 10 | mpbird 247 | 1 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 Vcvv 3332 {csn 4313 ↦ cmpt 4873 × cxp 5256 ◡ccnv 5257 ↾ cres 5260 ∘ ccom 5262 Fn wfn 6036 ⟶wf 6037 (class class class)co 6805 1st c1st 7323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-1st 7325 df-2nd 7326 |
This theorem is referenced by: curry2ima 29787 |
Copyright terms: Public domain | W3C validator |