MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry2 Structured version   Visualization version   GIF version

Theorem curry2 7444
Description: Composition with (1st ↾ (V × {𝐶})) turns any binary operation 𝐹 with a constant second operand into a function 𝐺 of the first operand only. This transformation is called "currying." (If this becomes frequently used, we can introduce a new notation for the hypothesis.) (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
curry2.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐺

Proof of Theorem curry2
StepHypRef Expression
1 fnfun 6139 . . . . 5 (𝐹 Fn (𝐴 × 𝐵) → Fun 𝐹)
2 1stconst 7437 . . . . . 6 (𝐶𝐵 → (1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V)
3 dff1o3 6299 . . . . . . 7 ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ↔ ((1st ↾ (V × {𝐶})):(V × {𝐶})–onto→V ∧ Fun (1st ↾ (V × {𝐶}))))
43simprbi 485 . . . . . 6 ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V → Fun (1st ↾ (V × {𝐶})))
52, 4syl 17 . . . . 5 (𝐶𝐵 → Fun (1st ↾ (V × {𝐶})))
6 funco 6082 . . . . 5 ((Fun 𝐹 ∧ Fun (1st ↾ (V × {𝐶}))) → Fun (𝐹(1st ↾ (V × {𝐶}))))
71, 5, 6syl2an 584 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → Fun (𝐹(1st ↾ (V × {𝐶}))))
8 dmco 5798 . . . . 5 dom (𝐹(1st ↾ (V × {𝐶}))) = ((1st ↾ (V × {𝐶})) “ dom 𝐹)
9 fndm 6141 . . . . . . . 8 (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵))
109adantr 467 . . . . . . 7 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → dom 𝐹 = (𝐴 × 𝐵))
1110imaeq2d 5617 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((1st ↾ (V × {𝐶})) “ dom 𝐹) = ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)))
12 imacnvcnv 5751 . . . . . . . . 9 ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵))
13 df-ima 5276 . . . . . . . . 9 ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ran ((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵))
14 resres 5562 . . . . . . . . . 10 ((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵)) = (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵)))
1514rneqi 5502 . . . . . . . . 9 ran ((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵)) = ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵)))
1612, 13, 153eqtri 2800 . . . . . . . 8 ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵)))
17 inxp 5405 . . . . . . . . . . . . 13 ((V × {𝐶}) ∩ (𝐴 × 𝐵)) = ((V ∩ 𝐴) × ({𝐶} ∩ 𝐵))
18 incom 3963 . . . . . . . . . . . . . . 15 (V ∩ 𝐴) = (𝐴 ∩ V)
19 inv1 4125 . . . . . . . . . . . . . . 15 (𝐴 ∩ V) = 𝐴
2018, 19eqtri 2796 . . . . . . . . . . . . . 14 (V ∩ 𝐴) = 𝐴
2120xpeq1i 5288 . . . . . . . . . . . . 13 ((V ∩ 𝐴) × ({𝐶} ∩ 𝐵)) = (𝐴 × ({𝐶} ∩ 𝐵))
2217, 21eqtri 2796 . . . . . . . . . . . 12 ((V × {𝐶}) ∩ (𝐴 × 𝐵)) = (𝐴 × ({𝐶} ∩ 𝐵))
23 snssi 4485 . . . . . . . . . . . . . 14 (𝐶𝐵 → {𝐶} ⊆ 𝐵)
24 df-ss 3743 . . . . . . . . . . . . . 14 ({𝐶} ⊆ 𝐵 ↔ ({𝐶} ∩ 𝐵) = {𝐶})
2523, 24sylib 209 . . . . . . . . . . . . 13 (𝐶𝐵 → ({𝐶} ∩ 𝐵) = {𝐶})
2625xpeq2d 5292 . . . . . . . . . . . 12 (𝐶𝐵 → (𝐴 × ({𝐶} ∩ 𝐵)) = (𝐴 × {𝐶}))
2722, 26syl5eq 2820 . . . . . . . . . . 11 (𝐶𝐵 → ((V × {𝐶}) ∩ (𝐴 × 𝐵)) = (𝐴 × {𝐶}))
2827reseq2d 5546 . . . . . . . . . 10 (𝐶𝐵 → (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵))) = (1st ↾ (𝐴 × {𝐶})))
2928rneqd 5503 . . . . . . . . 9 (𝐶𝐵 → ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵))) = ran (1st ↾ (𝐴 × {𝐶})))
30 1stconst 7437 . . . . . . . . . 10 (𝐶𝐵 → (1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–1-1-onto𝐴)
31 f1ofo 6300 . . . . . . . . . 10 ((1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–1-1-onto𝐴 → (1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–onto𝐴)
32 forn 6274 . . . . . . . . . 10 ((1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–onto𝐴 → ran (1st ↾ (𝐴 × {𝐶})) = 𝐴)
3330, 31, 323syl 18 . . . . . . . . 9 (𝐶𝐵 → ran (1st ↾ (𝐴 × {𝐶})) = 𝐴)
3429, 33eqtrd 2808 . . . . . . . 8 (𝐶𝐵 → ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵))) = 𝐴)
3516, 34syl5eq 2820 . . . . . . 7 (𝐶𝐵 → ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = 𝐴)
3635adantl 468 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = 𝐴)
3711, 36eqtrd 2808 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((1st ↾ (V × {𝐶})) “ dom 𝐹) = 𝐴)
388, 37syl5eq 2820 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → dom (𝐹(1st ↾ (V × {𝐶}))) = 𝐴)
39 curry2.1 . . . . . 6 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
4039fneq1i 6136 . . . . 5 (𝐺 Fn 𝐴 ↔ (𝐹(1st ↾ (V × {𝐶}))) Fn 𝐴)
41 df-fn 6045 . . . . 5 ((𝐹(1st ↾ (V × {𝐶}))) Fn 𝐴 ↔ (Fun (𝐹(1st ↾ (V × {𝐶}))) ∧ dom (𝐹(1st ↾ (V × {𝐶}))) = 𝐴))
4240, 41bitri 265 . . . 4 (𝐺 Fn 𝐴 ↔ (Fun (𝐹(1st ↾ (V × {𝐶}))) ∧ dom (𝐹(1st ↾ (V × {𝐶}))) = 𝐴))
437, 38, 42sylanbrc 573 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 Fn 𝐴)
44 dffn5 6400 . . 3 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
4543, 44sylib 209 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
4639fveq1i 6349 . . . . 5 (𝐺𝑥) = ((𝐹(1st ↾ (V × {𝐶})))‘𝑥)
47 dff1o4 6301 . . . . . . . . 9 ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ↔ ((1st ↾ (V × {𝐶})) Fn (V × {𝐶}) ∧ (1st ↾ (V × {𝐶})) Fn V))
482, 47sylib 209 . . . . . . . 8 (𝐶𝐵 → ((1st ↾ (V × {𝐶})) Fn (V × {𝐶}) ∧ (1st ↾ (V × {𝐶})) Fn V))
4948simprd 484 . . . . . . 7 (𝐶𝐵(1st ↾ (V × {𝐶})) Fn V)
50 vex 3358 . . . . . . 7 𝑥 ∈ V
51 fvco2 6432 . . . . . . 7 (((1st ↾ (V × {𝐶})) Fn V ∧ 𝑥 ∈ V) → ((𝐹(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
5249, 50, 51sylancl 575 . . . . . 6 (𝐶𝐵 → ((𝐹(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
5352ad2antlr 707 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → ((𝐹(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
5446, 53syl5eq 2820 . . . 4 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
552adantr 467 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → (1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V)
5650a1i 11 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴) → 𝑥 ∈ V)
57 snidg 4356 . . . . . . . . . . 11 (𝐶𝐵𝐶 ∈ {𝐶})
5857adantr 467 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴) → 𝐶 ∈ {𝐶})
59 opelxp 5298 . . . . . . . . . 10 (⟨𝑥, 𝐶⟩ ∈ (V × {𝐶}) ↔ (𝑥 ∈ V ∧ 𝐶 ∈ {𝐶}))
6056, 58, 59sylanbrc 573 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶}))
6155, 60jca 502 . . . . . . . 8 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ∧ ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶})))
6250a1i 11 . . . . . . . . . . . 12 (𝐶𝐵𝑥 ∈ V)
6362, 57, 59sylanbrc 573 . . . . . . . . . . 11 (𝐶𝐵 → ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶}))
64 fvres 6365 . . . . . . . . . . 11 (⟨𝑥, 𝐶⟩ ∈ (V × {𝐶}) → ((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = (1st ‘⟨𝑥, 𝐶⟩))
6563, 64syl 17 . . . . . . . . . 10 (𝐶𝐵 → ((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = (1st ‘⟨𝑥, 𝐶⟩))
6665adantr 467 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = (1st ‘⟨𝑥, 𝐶⟩))
67 op1stg 7348 . . . . . . . . . 10 ((𝑥𝐴𝐶𝐵) → (1st ‘⟨𝑥, 𝐶⟩) = 𝑥)
6867ancoms 447 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → (1st ‘⟨𝑥, 𝐶⟩) = 𝑥)
6966, 68eqtrd 2808 . . . . . . . 8 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = 𝑥)
70 f1ocnvfv 6696 . . . . . . . 8 (((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ∧ ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶})) → (((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = 𝑥 → ((1st ↾ (V × {𝐶}))‘𝑥) = ⟨𝑥, 𝐶⟩))
7161, 69, 70sylc 65 . . . . . . 7 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶}))‘𝑥) = ⟨𝑥, 𝐶⟩)
7271fveq2d 6352 . . . . . 6 ((𝐶𝐵𝑥𝐴) → (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)) = (𝐹‘⟨𝑥, 𝐶⟩))
7372adantll 694 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)) = (𝐹‘⟨𝑥, 𝐶⟩))
74 df-ov 6815 . . . . 5 (𝑥𝐹𝐶) = (𝐹‘⟨𝑥, 𝐶⟩)
7573, 74syl6eqr 2826 . . . 4 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)) = (𝑥𝐹𝐶))
7654, 75eqtrd 2808 . . 3 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝑥𝐹𝐶))
7776mpteq2dva 4891 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝑥𝐴 ↦ (𝐺𝑥)) = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
7845, 77eqtrd 2808 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1634  wcel 2148  Vcvv 3355  cin 3728  wss 3729  {csn 4326  cop 4332  cmpt 4876   × cxp 5261  ccnv 5262  dom cdm 5263  ran crn 5264  cres 5265  cima 5266  ccom 5267  Fun wfun 6036   Fn wfn 6037  ontowfo 6040  1-1-ontowf1o 6041  cfv 6042  (class class class)co 6812  1st c1st 7334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-nul 4074  df-if 4236  df-sn 4327  df-pr 4329  df-op 4333  df-uni 4586  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-id 5171  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-ov 6815  df-1st 7336  df-2nd 7337
This theorem is referenced by:  curry2f  7445  curry2val  7446
  Copyright terms: Public domain W3C validator