Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curfv Structured version   Visualization version   GIF version

Theorem curfv 33060
Description: Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
curfv (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))

Proof of Theorem curfv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffn5 6208 . . . . . . . . . 10 (𝐹 Fn (𝑉 × 𝑊) ↔ 𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
2 cureq 33056 . . . . . . . . . 10 (𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
31, 2sylbi 207 . . . . . . . . 9 (𝐹 Fn (𝑉 × 𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
43adantr 481 . . . . . . . 8 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
5 fveq2 6158 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
65mpt2mpt 6717 . . . . . . . . 9 (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) = (𝑥𝑉, 𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))
7 fvex 6168 . . . . . . . . . . 11 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V
87rgen2w 2921 . . . . . . . . . 10 𝑥𝑉𝑦𝑊 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V
98a1i 11 . . . . . . . . 9 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → ∀𝑥𝑉𝑦𝑊 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V)
10 ne0i 3903 . . . . . . . . . 10 (𝐵𝑊𝑊 ≠ ∅)
1110adantl 482 . . . . . . . . 9 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → 𝑊 ≠ ∅)
126, 9, 11mpt2curryd 7355 . . . . . . . 8 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
134, 12eqtrd 2655 . . . . . . 7 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry 𝐹 = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
14133adant2 1078 . . . . . 6 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → curry 𝐹 = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
1514fveq1d 6160 . . . . 5 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → (curry 𝐹𝐴) = ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴))
1615adantr 481 . . . 4 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → (curry 𝐹𝐴) = ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴))
17 mptexg 6449 . . . . . 6 (𝑊𝑋 → (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) ∈ V)
18 opeq1 4377 . . . . . . . . 9 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
1918fveq2d 6162 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹‘⟨𝑥, 𝑦⟩) = (𝐹‘⟨𝐴, 𝑦⟩))
2019mpteq2dv 4715 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
21 eqid 2621 . . . . . . 7 (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))
2220, 21fvmptg 6247 . . . . . 6 ((𝐴𝑉 ∧ (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) ∈ V) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2317, 22sylan2 491 . . . . 5 ((𝐴𝑉𝑊𝑋) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
24233ad2antl2 1222 . . . 4 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2516, 24eqtrd 2655 . . 3 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → (curry 𝐹𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2625fveq1d 6160 . 2 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵))
27 opeq2 4378 . . . . . . 7 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2827fveq2d 6162 . . . . . 6 (𝑦 = 𝐵 → (𝐹‘⟨𝐴, 𝑦⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
29 eqid 2621 . . . . . 6 (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))
30 fvex 6168 . . . . . 6 (𝐹‘⟨𝐴, 𝐵⟩) ∈ V
3128, 29, 30fvmpt 6249 . . . . 5 (𝐵𝑊 → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐹‘⟨𝐴, 𝐵⟩))
32 df-ov 6618 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
3331, 32syl6eqr 2673 . . . 4 (𝐵𝑊 → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
34333ad2ant3 1082 . . 3 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
3534adantr 481 . 2 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
3626, 35eqtrd 2655 1 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2908  Vcvv 3190  c0 3897  cop 4161  cmpt 4683   × cxp 5082   Fn wfn 5852  cfv 5857  (class class class)co 6615  curry ccur 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-cur 7353
This theorem is referenced by:  unccur  33063  matunitlindflem1  33076  matunitlindflem2  33077
  Copyright terms: Public domain W3C validator