MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1 Structured version   Visualization version   GIF version

Theorem curf1 17073
Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
curf1.j 𝐽 = (Hom ‘𝐷)
curf1.1 1 = (Id‘𝐶)
Assertion
Ref Expression
curf1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
Distinct variable groups:   𝑦,𝑔,𝑧, 1   𝑦,𝐴   𝐵,𝑔,𝑦,𝑧   𝐶,𝑔,𝑦,𝑧   𝐷,𝑔,𝑦,𝑧   𝜑,𝑔,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐽   𝑔,𝐾,𝑦,𝑧   𝑔,𝑋,𝑦,𝑧   𝑔,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)

Proof of Theorem curf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curf1.k . 2 𝐾 = ((1st𝐺)‘𝑋)
2 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
3 curfval.a . . . 4 𝐴 = (Base‘𝐶)
4 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
6 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
7 curfval.b . . . 4 𝐵 = (Base‘𝐷)
8 curf1.j . . . 4 𝐽 = (Hom ‘𝐷)
9 curf1.1 . . . 4 1 = (Id‘𝐶)
102, 3, 4, 5, 6, 7, 8, 9curf1fval 17072 . . 3 (𝜑 → (1st𝐺) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
11 simpr 471 . . . . . 6 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
1211oveq1d 6808 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥(1st𝐹)𝑦) = (𝑋(1st𝐹)𝑦))
1312mpteq2dv 4879 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
14 simp1r 1240 . . . . . . . . 9 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → 𝑥 = 𝑋)
1514opeq1d 4545 . . . . . . . 8 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑦⟩)
1614opeq1d 4545 . . . . . . . 8 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑧⟩)
1715, 16oveq12d 6811 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩) = (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩))
1814fveq2d 6336 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ( 1𝑥) = ( 1𝑋))
19 eqidd 2772 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → 𝑔 = 𝑔)
2017, 18, 19oveq123d 6814 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))
2120mpteq2dv 4879 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
2221mpt2eq3dva 6866 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
2313, 22opeq12d 4547 . . 3 ((𝜑𝑥 = 𝑋) → ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
24 curf1.x . . 3 (𝜑𝑋𝐴)
25 opex 5060 . . . 4 ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ ∈ V
2625a1i 11 . . 3 (𝜑 → ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ ∈ V)
2710, 23, 24, 26fvmptd 6430 . 2 (𝜑 → ((1st𝐺)‘𝑋) = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
281, 27syl5eq 2817 1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  cop 4322  cmpt 4863  cfv 6031  (class class class)co 6793  cmpt2 6795  1st c1st 7313  2nd c2nd 7314  Basecbs 16064  Hom chom 16160  Catccat 16532  Idccid 16533   Func cfunc 16721   ×c cxpc 17016   curryF ccurf 17058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-curf 17062
This theorem is referenced by:  curf11  17074  curf12  17075  curf1cl  17076  curf2ndf  17095
  Copyright terms: Public domain W3C validator