Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1 Structured version   Visualization version   GIF version

Theorem curf1 17073
 Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
curf1.j 𝐽 = (Hom ‘𝐷)
curf1.1 1 = (Id‘𝐶)
Assertion
Ref Expression
curf1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
Distinct variable groups:   𝑦,𝑔,𝑧, 1   𝑦,𝐴   𝐵,𝑔,𝑦,𝑧   𝐶,𝑔,𝑦,𝑧   𝐷,𝑔,𝑦,𝑧   𝜑,𝑔,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐽   𝑔,𝐾,𝑦,𝑧   𝑔,𝑋,𝑦,𝑧   𝑔,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)

Proof of Theorem curf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curf1.k . 2 𝐾 = ((1st𝐺)‘𝑋)
2 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
3 curfval.a . . . 4 𝐴 = (Base‘𝐶)
4 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
6 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
7 curfval.b . . . 4 𝐵 = (Base‘𝐷)
8 curf1.j . . . 4 𝐽 = (Hom ‘𝐷)
9 curf1.1 . . . 4 1 = (Id‘𝐶)
102, 3, 4, 5, 6, 7, 8, 9curf1fval 17072 . . 3 (𝜑 → (1st𝐺) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
11 simpr 471 . . . . . 6 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
1211oveq1d 6808 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥(1st𝐹)𝑦) = (𝑋(1st𝐹)𝑦))
1312mpteq2dv 4879 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
14 simp1r 1240 . . . . . . . . 9 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → 𝑥 = 𝑋)
1514opeq1d 4545 . . . . . . . 8 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑦⟩)
1614opeq1d 4545 . . . . . . . 8 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑧⟩)
1715, 16oveq12d 6811 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩) = (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩))
1814fveq2d 6336 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → ( 1𝑥) = ( 1𝑋))
19 eqidd 2772 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → 𝑔 = 𝑔)
2017, 18, 19oveq123d 6814 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))
2120mpteq2dv 4879 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦𝐵𝑧𝐵) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
2221mpt2eq3dva 6866 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
2313, 22opeq12d 4547 . . 3 ((𝜑𝑥 = 𝑋) → ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
24 curf1.x . . 3 (𝜑𝑋𝐴)
25 opex 5060 . . . 4 ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ ∈ V
2625a1i 11 . . 3 (𝜑 → ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ ∈ V)
2710, 23, 24, 26fvmptd 6430 . 2 (𝜑 → ((1st𝐺)‘𝑋) = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
281, 27syl5eq 2817 1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  Vcvv 3351  ⟨cop 4322   ↦ cmpt 4863  ‘cfv 6031  (class class class)co 6793   ↦ cmpt2 6795  1st c1st 7313  2nd c2nd 7314  Basecbs 16064  Hom chom 16160  Catccat 16532  Idccid 16533   Func cfunc 16721   ×c cxpc 17016   curryF ccurf 17058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-curf 17062 This theorem is referenced by:  curf11  17074  curf12  17075  curf1cl  17076  curf2ndf  17095
 Copyright terms: Public domain W3C validator