MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsublen Structured version   Visualization version   GIF version

Theorem cshwsublen 13750
Description: Cyclically shifting a word is invariant regarding subtraction of the word's length. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
cshwsublen ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))

Proof of Theorem cshwsublen
StepHypRef Expression
1 oveq2 6800 . . . . . 6 ((♯‘𝑊) = 0 → (𝑁 − (♯‘𝑊)) = (𝑁 − 0))
2 zcn 11583 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32subid1d 10582 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
43adantl 467 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑁 − 0) = 𝑁)
51, 4sylan9eq 2824 . . . . 5 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 − (♯‘𝑊)) = 𝑁)
65eqcomd 2776 . . . 4 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑁 = (𝑁 − (♯‘𝑊)))
76oveq2d 6808 . . 3 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
87ex 397 . 2 ((♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))))
9 zre 11582 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
109adantl 467 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
1110adantl 467 . . . . . . 7 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
12 lencl 13519 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
13 elnnne0 11507 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
14 nnrp 12044 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
1513, 14sylbir 225 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℝ+)
1615ex 397 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1712, 16syl 17 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1817adantr 466 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1918impcom 394 . . . . . . 7 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℝ+)
2011, 19jca 495 . . . . . 6 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
21 modeqmodmin 12947 . . . . . 6 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → (𝑁 mod (♯‘𝑊)) = ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊)))
2220, 21syl 17 . . . . 5 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) = ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊)))
2322oveq2d 6808 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
24 cshwmodn 13749 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
2524adantl 467 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
26 simpl 468 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
2712nn0zd 11681 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
28 zsubcl 11620 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2927, 28sylan2 572 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑊 ∈ Word 𝑉) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
3029ancoms 455 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
3126, 30jca 495 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ))
3231adantl 467 . . . . 5 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ))
33 cshwmodn 13749 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ) → (𝑊 cyclShift (𝑁 − (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
3432, 33syl 17 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 − (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
3523, 25, 343eqtr4d 2814 . . 3 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
3635ex 397 . 2 ((♯‘𝑊) ≠ 0 → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))))
378, 36pm2.61ine 3025 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  cfv 6031  (class class class)co 6792  cr 10136  0cc0 10137  cmin 10467  cn 11221  0cn0 11493  cz 11578  +crp 12034   mod cmo 12875  chash 13320  Word cword 13486   cyclShift ccsh 13742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-hash 13321  df-word 13494  df-concat 13496  df-substr 13498  df-csh 13743
This theorem is referenced by:  2cshwcshw  13779  cshwcsh2id  13782
  Copyright terms: Public domain W3C validator