![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwsidrepswmod0 | Structured version Visualization version GIF version |
Description: If cyclically shifting a word of length being a prime number results in the word itself, the shift must be either by 0 (modulo the length of the word) or the word must be a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.) |
Ref | Expression |
---|---|
cshwsidrepswmod0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (#‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 399 | . . 3 ⊢ ((𝐿 mod (#‘𝑊)) = 0 → ((𝐿 mod (#‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊)))) | |
2 | 1 | 2a1d 26 | . 2 ⊢ ((𝐿 mod (#‘𝑊)) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (#‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊)))))) |
3 | 3simpa 1078 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ)) | |
4 | 3 | ad2antlr 763 | . . . . 5 ⊢ ((((𝐿 mod (#‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ)) |
5 | simplr3 1125 | . . . . 5 ⊢ ((((𝐿 mod (#‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝐿 ∈ ℤ) | |
6 | simpll 805 | . . . . 5 ⊢ ((((𝐿 mod (#‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 mod (#‘𝑊)) ≠ 0) | |
7 | simpr 476 | . . . . 5 ⊢ ((((𝐿 mod (#‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝑊 cyclShift 𝐿) = 𝑊) | |
8 | cshwsidrepsw 15847 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (#‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (#‘𝑊)))) | |
9 | 8 | imp 444 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (#‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))) |
10 | 4, 5, 6, 7, 9 | syl13anc 1368 | . . . 4 ⊢ ((((𝐿 mod (#‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))) |
11 | 10 | olcd 407 | . . 3 ⊢ ((((𝐿 mod (#‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ((𝐿 mod (#‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊)))) |
12 | 11 | exp31 629 | . 2 ⊢ ((𝐿 mod (#‘𝑊)) ≠ 0 → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (#‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊)))))) |
13 | 2, 12 | pm2.61ine 2906 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (#‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ‘cfv 5926 (class class class)co 6690 0cc0 9974 ℤcz 11415 mod cmo 12708 #chash 13157 Word cword 13323 repeatS creps 13330 cyclShift ccsh 13580 ℙcprime 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-hash 13158 df-word 13331 df-concat 13333 df-substr 13335 df-reps 13338 df-csh 13581 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-dvds 15028 df-gcd 15264 df-prm 15433 df-phi 15518 |
This theorem is referenced by: cshwshashlem1 15849 |
Copyright terms: Public domain | W3C validator |