MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwshashlem2 Structured version   Visualization version   GIF version

Theorem cshwshashlem2 16010
Description: If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.)
Hypothesis
Ref Expression
cshwshash.0 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
Assertion
Ref Expression
cshwshashlem2 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
Distinct variable groups:   𝑖,𝐿   𝑖,𝑉   𝑖,𝑊   𝜑,𝑖   𝑖,𝐾

Proof of Theorem cshwshashlem2
StepHypRef Expression
1 oveq1 6800 . . . . . . . 8 ((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)))
21eqcomd 2777 . . . . . . 7 ((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)))
32ad2antrr 705 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)))
4 cshwshash.0 . . . . . . . . . . 11 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
54simpld 482 . . . . . . . . . 10 (𝜑𝑊 ∈ Word 𝑉)
65adantr 466 . . . . . . . . 9 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → 𝑊 ∈ Word 𝑉)
76adantl 467 . . . . . . . 8 (((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) → 𝑊 ∈ Word 𝑉)
87adantr 466 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → 𝑊 ∈ Word 𝑉)
9 elfzofz 12693 . . . . . . . . 9 (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ (0...(♯‘𝑊)))
1093ad2ant2 1128 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → 𝐾 ∈ (0...(♯‘𝑊)))
1110adantl 467 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → 𝐾 ∈ (0...(♯‘𝑊)))
12 elfzofz 12693 . . . . . . . . . 10 (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ (0...(♯‘𝑊)))
13 fznn0sub2 12654 . . . . . . . . . 10 (𝐿 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
1412, 13syl 17 . . . . . . . . 9 (𝐿 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
15143ad2ant1 1127 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
1615adantl 467 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
17 elfzo0 12717 . . . . . . . . . . . 12 (𝐿 ∈ (0..^(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)))
18 zre 11583 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1918adantr 466 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → 𝐾 ∈ ℝ)
20 nnre 11229 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
21 nn0re 11503 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
22 resubcl 10547 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
2320, 21, 22syl2anr 584 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
2423adantl 467 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
2519, 24readdcld 10271 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ)
2620adantl 467 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℝ)
2726adantl 467 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → (♯‘𝑊) ∈ ℝ)
2825, 27jca 501 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
2928ex 397 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
30 elfzoelz 12678 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℤ)
3129, 30syl11 33 . . . . . . . . . . . . 13 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
32313adant3 1126 . . . . . . . . . . . 12 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
3317, 32sylbi 207 . . . . . . . . . . 11 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
3433imp 393 . . . . . . . . . 10 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
35343adant3 1126 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
36 fzonmapblen 12722 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) < (♯‘𝑊))
37 ltle 10328 . . . . . . . . 9 (((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((𝐾 + ((♯‘𝑊) − 𝐿)) < (♯‘𝑊) → (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊)))
3835, 36, 37sylc 65 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))
3938adantl 467 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))
40 simpl 468 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
41 elfzelz 12549 . . . . . . . . . 10 (𝐾 ∈ (0...(♯‘𝑊)) → 𝐾 ∈ ℤ)
42413ad2ant1 1127 . . . . . . . . 9 ((𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊)) → 𝐾 ∈ ℤ)
4342adantl 467 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → 𝐾 ∈ ℤ)
44 elfzelz 12549 . . . . . . . . . 10 (((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
45443ad2ant2 1128 . . . . . . . . 9 ((𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
4645adantl 467 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
47 2cshw 13768 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))))
4840, 43, 46, 47syl3anc 1476 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))))
498, 11, 16, 39, 48syl13anc 1478 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))))
50123ad2ant1 1127 . . . . . . 7 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → 𝐿 ∈ (0...(♯‘𝑊)))
51 elfzelz 12549 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℤ)
52 2cshwid 13769 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = 𝑊)
5351, 52sylan2 580 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = 𝑊)
547, 50, 53syl2an 583 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = 𝑊)
553, 49, 543eqtr3d 2813 . . . . 5 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))) = 𝑊)
56 simplrl 762 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → 𝜑)
57 simplrr 763 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))
58 3simpa 1142 . . . . . . . . . . . 12 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ))
5917, 58sylbi 207 . . . . . . . . . . 11 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ))
60 nnz 11601 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
61 nn0z 11602 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
62 zsubcl 11621 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
6360, 61, 62syl2anr 584 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
6463anim2i 603 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → (𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ))
6564ancoms 455 . . . . . . . . . . . 12 (((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ))
66 zaddcl 11619 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
6765, 66syl 17 . . . . . . . . . . 11 (((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐾 ∈ ℤ) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
6859, 30, 67syl2an 583 . . . . . . . . . 10 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
69683adant3 1126 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
70 elfzo0 12717 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝑊)) ↔ (𝐾 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐾 < (♯‘𝑊)))
71 elnn0z 11592 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
7218ad2antrr 705 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 𝐾 ∈ ℝ)
73233adant3 1126 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
7473adantl 467 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
75 simplr 752 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 0 ≤ 𝐾)
76 posdif 10723 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (𝐿 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 𝐿)))
7721, 20, 76syl2an 583 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐿 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 𝐿)))
7877biimp3a 1580 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < ((♯‘𝑊) − 𝐿))
7978adantl 467 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 0 < ((♯‘𝑊) − 𝐿))
8072, 74, 75, 79addgegt0d 10803 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿)))
8180ex 397 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8271, 81sylbi 207 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0 → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
83823ad2ant1 1127 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐾 < (♯‘𝑊)) → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8470, 83sylbi 207 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8584com12 32 . . . . . . . . . . . 12 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8617, 85sylbi 207 . . . . . . . . . . 11 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8786imp 393 . . . . . . . . . 10 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿)))
88873adant3 1126 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿)))
89 elnnz 11589 . . . . . . . . 9 ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℕ ↔ ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ ∧ 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
9069, 88, 89sylanbrc 572 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℕ)
9117simp2bi 1140 . . . . . . . . 9 (𝐿 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
92913ad2ant1 1127 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (♯‘𝑊) ∈ ℕ)
93 elfzo1 12726 . . . . . . . 8 ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊)) ↔ ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) < (♯‘𝑊)))
9490, 92, 36, 93syl3anbrc 1428 . . . . . . 7 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊)))
9594adantl 467 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊)))
964cshwshashlem1 16009 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))) ≠ 𝑊)
9756, 57, 95, 96syl3anc 1476 . . . . 5 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))) ≠ 𝑊)
9855, 97pm2.21ddne 3027 . . . 4 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))
9998ex 397 . . 3 (((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
10099ex 397 . 2 ((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
101 2a1 28 . 2 ((𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
102100, 101pm2.61ine 3026 1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062   class class class wbr 4786  cfv 6031  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   < clt 10276  cle 10277  cmin 10468  cn 11222  0cn0 11494  cz 11579  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13487   cyclShift ccsh 13743  cprime 15592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-word 13495  df-concat 13497  df-substr 13499  df-reps 13502  df-csh 13744  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425  df-prm 15593  df-phi 15678
This theorem is referenced by:  cshwshashlem3  16011
  Copyright terms: Public domain W3C validator