![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwshash | Structured version Visualization version GIF version |
Description: If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
Ref | Expression |
---|---|
cshwrepswhash1.m | ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} |
Ref | Expression |
---|---|
cshwshash | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → ((#‘𝑀) = (#‘𝑊) ∨ (#‘𝑀) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | repswsymballbi 13573 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (#‘𝑊)) ↔ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) = (𝑊‘0))) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (#‘𝑊)) ↔ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) = (𝑊‘0))) |
3 | prmnn 15435 | . . . . . . . . 9 ⊢ ((#‘𝑊) ∈ ℙ → (#‘𝑊) ∈ ℕ) | |
4 | 3 | nnge1d 11101 | . . . . . . . 8 ⊢ ((#‘𝑊) ∈ ℙ → 1 ≤ (#‘𝑊)) |
5 | wrdsymb1 13375 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑊)) → (𝑊‘0) ∈ 𝑉) | |
6 | 4, 5 | sylan2 490 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → (𝑊‘0) ∈ 𝑉) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))) → (𝑊‘0) ∈ 𝑉) |
8 | 3 | ad2antlr 763 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))) → (#‘𝑊) ∈ ℕ) |
9 | simpr 476 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))) → 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))) | |
10 | cshwrepswhash1.m | . . . . . . 7 ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
11 | 10 | cshwrepswhash1 15856 | . . . . . 6 ⊢ (((𝑊‘0) ∈ 𝑉 ∧ (#‘𝑊) ∈ ℕ ∧ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))) → (#‘𝑀) = 1) |
12 | 7, 8, 9, 11 | syl3anc 1366 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))) → (#‘𝑀) = 1) |
13 | 12 | ex 449 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (#‘𝑊)) → (#‘𝑀) = 1)) |
14 | 2, 13 | sylbird 250 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → (#‘𝑀) = 1)) |
15 | olc 398 | . . 3 ⊢ ((#‘𝑀) = 1 → ((#‘𝑀) = (#‘𝑊) ∨ (#‘𝑀) = 1)) | |
16 | 14, 15 | syl6com 37 | . 2 ⊢ (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → ((#‘𝑀) = (#‘𝑊) ∨ (#‘𝑀) = 1))) |
17 | rexnal 3024 | . . . 4 ⊢ (∃𝑖 ∈ (0..^(#‘𝑊)) ¬ (𝑊‘𝑖) = (𝑊‘0) ↔ ¬ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) = (𝑊‘0)) | |
18 | df-ne 2824 | . . . . . 6 ⊢ ((𝑊‘𝑖) ≠ (𝑊‘0) ↔ ¬ (𝑊‘𝑖) = (𝑊‘0)) | |
19 | 18 | bicomi 214 | . . . . 5 ⊢ (¬ (𝑊‘𝑖) = (𝑊‘0) ↔ (𝑊‘𝑖) ≠ (𝑊‘0)) |
20 | 19 | rexbii 3070 | . . . 4 ⊢ (∃𝑖 ∈ (0..^(#‘𝑊)) ¬ (𝑊‘𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) |
21 | 17, 20 | bitr3i 266 | . . 3 ⊢ (¬ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) |
22 | 10 | cshwshashnsame 15857 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (#‘𝑀) = (#‘𝑊))) |
23 | orc 399 | . . . 4 ⊢ ((#‘𝑀) = (#‘𝑊) → ((#‘𝑀) = (#‘𝑊) ∨ (#‘𝑀) = 1)) | |
24 | 22, 23 | syl6com 37 | . . 3 ⊢ (∃𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → ((#‘𝑀) = (#‘𝑊) ∨ (#‘𝑀) = 1))) |
25 | 21, 24 | sylbi 207 | . 2 ⊢ (¬ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → ((#‘𝑀) = (#‘𝑊) ∨ (#‘𝑀) = 1))) |
26 | 16, 25 | pm2.61i 176 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → ((#‘𝑀) = (#‘𝑊) ∨ (#‘𝑀) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 {crab 2945 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 0cc0 9974 1c1 9975 ≤ cle 10113 ℕcn 11058 ..^cfzo 12504 #chash 13157 Word cword 13323 repeatS creps 13330 cyclShift ccsh 13580 ℙcprime 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-disj 4653 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-hash 13158 df-word 13331 df-concat 13333 df-substr 13335 df-reps 13338 df-csh 13581 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-sum 14461 df-dvds 15028 df-gcd 15264 df-prm 15433 df-phi 15518 |
This theorem is referenced by: hashecclwwlkn1 27041 |
Copyright terms: Public domain | W3C validator |