MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwleneq Structured version   Visualization version   GIF version

Theorem cshwleneq 13794
Description: If the results of cyclically shifting two words are equal, the length of the two words was equal. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshwleneq (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘𝑊) = (♯‘𝑈))

Proof of Theorem cshwleneq
StepHypRef Expression
1 cshwlen 13776 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
21ad2ant2r 742 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
32eqcomd 2780 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (♯‘𝑊) = (♯‘(𝑊 cyclShift 𝑁)))
433adant3 1153 . 2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘𝑊) = (♯‘(𝑊 cyclShift 𝑁)))
5 fveq2 6348 . . 3 ((𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘(𝑈 cyclShift 𝑀)))
653ad2ant3 1156 . 2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘(𝑈 cyclShift 𝑀)))
7 cshwlen 13776 . . . 4 ((𝑈 ∈ Word 𝑉𝑀 ∈ ℤ) → (♯‘(𝑈 cyclShift 𝑀)) = (♯‘𝑈))
87ad2ant2l 741 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (♯‘(𝑈 cyclShift 𝑀)) = (♯‘𝑈))
983adant3 1153 . 2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘(𝑈 cyclShift 𝑀)) = (♯‘𝑈))
104, 6, 93eqtrd 2812 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘𝑊) = (♯‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1098   = wceq 1634  wcel 2148  cfv 6042  (class class class)co 6812  cz 11601  chash 13343  Word cword 13509   cyclShift ccsh 13765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236  ax-pre-sup 10237
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-sup 8525  df-inf 8526  df-card 8986  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-div 10908  df-nn 11244  df-n0 11517  df-z 11602  df-uz 11911  df-rp 12053  df-fz 12556  df-fzo 12696  df-fl 12823  df-mod 12899  df-hash 13344  df-word 13517  df-concat 13519  df-substr 13521  df-csh 13766
This theorem is referenced by:  cshweqdif2  13796
  Copyright terms: Public domain W3C validator