MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwcsh2id Structured version   Visualization version   GIF version

Theorem cshwcsh2id 13805
Description: A cyclically shifted word can be reconstructed by cyclically shifting it again twice. Lemma for erclwwlktr 27193 and erclwwlkntr 27250. (Contributed by AV, 9-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.)
Hypotheses
Ref Expression
cshwcsh2id.1 (𝜑𝑧 ∈ Word 𝑉)
cshwcsh2id.2 (𝜑 → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))
Assertion
Ref Expression
cshwcsh2id (𝜑 → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
Distinct variable group:   𝑘,𝑚,𝑛,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑘,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑧,𝑘,𝑚,𝑛)

Proof of Theorem cshwcsh2id
StepHypRef Expression
1 oveq1 6819 . . . . . . . . 9 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑦 cyclShift 𝑚) = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))
21eqeq2d 2784 . . . . . . . 8 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑥 = (𝑦 cyclShift 𝑚) ↔ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)))
32anbi2d 615 . . . . . . 7 (𝑦 = (𝑧 cyclShift 𝑘) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))))
43adantr 467 . . . . . 6 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))))
5 elfznn0 12662 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(♯‘𝑧)) → 𝑘 ∈ ℕ0)
6 elfznn0 12662 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...(♯‘𝑦)) → 𝑚 ∈ ℕ0)
7 nn0addcl 11552 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℕ0)
85, 6, 7syl2anr 585 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (𝑘 + 𝑚) ∈ ℕ0)
98adantr 467 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ∈ ℕ0)
10 elfz3nn0 12663 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(♯‘𝑧)) → (♯‘𝑧) ∈ ℕ0)
1110ad2antlr 707 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (♯‘𝑧) ∈ ℕ0)
12 simprl 776 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ≤ (♯‘𝑧))
13 elfz2nn0 12660 . . . . . . . . . . . . . . 15 ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ↔ ((𝑘 + 𝑚) ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0 ∧ (𝑘 + 𝑚) ≤ (♯‘𝑧)))
149, 11, 12, 13syl3anbrc 1434 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ∈ (0...(♯‘𝑧)))
1514adantr 467 . . . . . . . . . . . . 13 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 + 𝑚) ∈ (0...(♯‘𝑧)))
16 cshwcsh2id.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝑧 ∈ Word 𝑉)
1716adantl 468 . . . . . . . . . . . . . . . . 17 (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → 𝑧 ∈ Word 𝑉)
1817adantl 468 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑧 ∈ Word 𝑉)
19 elfzelz 12571 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(♯‘𝑧)) → 𝑘 ∈ ℤ)
2019ad2antlr 707 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑘 ∈ ℤ)
21 elfzelz 12571 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...(♯‘𝑦)) → 𝑚 ∈ ℤ)
2221adantr 467 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 𝑚 ∈ ℤ)
2322adantr 467 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑚 ∈ ℤ)
24 2cshw 13790 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ Word 𝑉𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
2518, 20, 23, 24syl3anc 1480 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
2625eqeq2d 2784 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) ↔ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))
2726biimpa 463 . . . . . . . . . . . . 13 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))
2815, 27jca 502 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))
2928exp41 422 . . . . . . . . . . 11 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3029com23 86 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3130com24 95 . . . . . . . . 9 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3231imp 394 . . . . . . . 8 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3332com12 32 . . . . . . 7 (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3433adantl 468 . . . . . 6 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
354, 34sylbid 231 . . . . 5 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3635ancoms 447 . . . 4 ((𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3736impcom 395 . . 3 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))
38 oveq2 6820 . . . . 5 (𝑛 = (𝑘 + 𝑚) → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift (𝑘 + 𝑚)))
3938eqeq2d 2784 . . . 4 (𝑛 = (𝑘 + 𝑚) → (𝑥 = (𝑧 cyclShift 𝑛) ↔ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))
4039rspcev 3465 . . 3 (((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))
4137, 40syl6com 37 . 2 (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
42 elfz2 12562 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...(♯‘𝑧)) ↔ ((0 ∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑘𝑘 ≤ (♯‘𝑧))))
43 nn0z 11624 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
44 zaddcl 11641 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 + 𝑚) ∈ ℤ)
4544ex 398 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℤ → (𝑚 ∈ ℤ → (𝑘 + 𝑚) ∈ ℤ))
4645adantl 468 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℤ → (𝑘 + 𝑚) ∈ ℤ))
4746impcom 395 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ ((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 + 𝑚) ∈ ℤ)
48 simprl 776 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ ((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (♯‘𝑧) ∈ ℤ)
4947, 48zsubcld 11711 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℤ ∧ ((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)
5049ex 398 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5143, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ0 → (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5251com12 32 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
53523adant1 1151 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5453adantr 467 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑘𝑘 ≤ (♯‘𝑧))) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5542, 54sylbi 208 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...(♯‘𝑧)) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
566, 55mpan9 497 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)
5756adantr 467 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)
58 elfz2nn0 12660 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0...(♯‘𝑧)) ↔ (𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)))
59 nn0re 11525 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
60 nn0re 11525 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑧) ∈ ℕ0 → (♯‘𝑧) ∈ ℝ)
6159, 60anim12i 601 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ))
62 nn0re 11525 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
6361, 62anim12i 601 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ))
64 simplr 774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (♯‘𝑧) ∈ ℝ)
65 readdcl 10242 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑘 + 𝑚) ∈ ℝ)
6665adantlr 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑘 + 𝑚) ∈ ℝ)
6764, 66ltnled 10407 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) ↔ ¬ (𝑘 + 𝑚) ≤ (♯‘𝑧)))
6864, 66posdifd 10837 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) ↔ 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
6968biimpd 220 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7067, 69sylbird 251 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7163, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7271ex 398 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))))
73723adant3 1153 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))))
7458, 73sylbi 208 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...(♯‘𝑧)) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))))
756, 74mpan9 497 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7675com12 32 . . . . . . . . . . . . . . . . . 18 (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7776adantr 467 . . . . . . . . . . . . . . . . 17 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7877impcom 395 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))
79 elnnz 11611 . . . . . . . . . . . . . . . 16 (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ ↔ (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ ∧ 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
8057, 78, 79sylanbrc 573 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ)
8180nnnn0d 11575 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ0)
8210ad2antlr 707 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (♯‘𝑧) ∈ ℕ0)
83 cshwcsh2id.2 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))
84 oveq2 6820 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑦) = (♯‘𝑧) → (0...(♯‘𝑦)) = (0...(♯‘𝑧)))
8584eleq2d 2839 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑦) = (♯‘𝑧) → (𝑚 ∈ (0...(♯‘𝑦)) ↔ 𝑚 ∈ (0...(♯‘𝑧))))
8685anbi1d 616 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑦) = (♯‘𝑧) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ↔ (𝑚 ∈ (0...(♯‘𝑧)) ∧ 𝑘 ∈ (0...(♯‘𝑧)))))
87 elfz2nn0 12660 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (0...(♯‘𝑧)) ↔ (𝑚 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑚 ≤ (♯‘𝑧)))
8859adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → 𝑘 ∈ ℝ)
8988, 62anim12i 601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ))
9060, 60jca 502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((♯‘𝑧) ∈ ℕ0 → ((♯‘𝑧) ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ))
9190ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((♯‘𝑧) ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ))
92 le2add 10733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) ∧ ((♯‘𝑧) ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ)) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧))))
9389, 91, 92syl2anc 574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧))))
94 nn0readdcl 11581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℝ)
9594adantlr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℝ)
9660ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (♯‘𝑧) ∈ ℝ)
9795, 96, 96lesubadd2d 10849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧) ↔ (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧))))
9893, 97sylibrd 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
9998expcomd 403 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑚 ≤ (♯‘𝑧) → (𝑘 ≤ (♯‘𝑧) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))
10099ex 398 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑚 ∈ ℕ0 → (𝑚 ≤ (♯‘𝑧) → (𝑘 ≤ (♯‘𝑧) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))))
101100com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑘 ≤ (♯‘𝑧) → (𝑚 ≤ (♯‘𝑧) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))))
1021013impia 1136 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → (𝑚 ≤ (♯‘𝑧) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))
103102com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ0 → (𝑚 ≤ (♯‘𝑧) → ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))
104103imp 394 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℕ0𝑚 ≤ (♯‘𝑧)) → ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
10558, 104syl5bi 233 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℕ0𝑚 ≤ (♯‘𝑧)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
1061053adant2 1152 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑚 ≤ (♯‘𝑧)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
10787, 106sylbi 208 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (0...(♯‘𝑧)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
108107imp 394 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (0...(♯‘𝑧)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))
10986, 108syl6bi 244 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑦) = (♯‘𝑧) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
110109adantr 467 . . . . . . . . . . . . . . . . 17 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
11183, 110syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
112111adantl 468 . . . . . . . . . . . . . . 15 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
113112impcom 395 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))
114 elfz2nn0 12660 . . . . . . . . . . . . . 14 (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ↔ (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0 ∧ ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
11581, 82, 113, 114syl3anbrc 1434 . . . . . . . . . . . . 13 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)))
116115adantr 467 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)))
11716adantl 468 . . . . . . . . . . . . . . . . 17 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → 𝑧 ∈ Word 𝑉)
118117adantl 468 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑧 ∈ Word 𝑉)
11919ad2antlr 707 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑘 ∈ ℤ)
12022adantr 467 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑚 ∈ ℤ)
121118, 119, 120, 24syl3anc 1480 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
12219, 21, 44syl2anr 585 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (𝑘 + 𝑚) ∈ ℤ)
123 cshwsublen 13773 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ Word 𝑉 ∧ (𝑘 + 𝑚) ∈ ℤ) → (𝑧 cyclShift (𝑘 + 𝑚)) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
124117, 122, 123syl2anr 585 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑧 cyclShift (𝑘 + 𝑚)) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
125121, 124eqtrd 2808 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
126125eqeq2d 2784 . . . . . . . . . . . . 13 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) ↔ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))
127126biimpa 463 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
128116, 127jca 502 . . . . . . . . . . 11 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))
129128exp41 422 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
130129com23 86 . . . . . . . . 9 (𝑚 ∈ (0...(♯‘𝑦)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
131130com24 95 . . . . . . . 8 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
132131imp 394 . . . . . . 7 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))
1333, 132syl6bi 244 . . . . . 6 (𝑦 = (𝑧 cyclShift 𝑘) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
134133com23 86 . . . . 5 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
135134impcom 395 . . . 4 ((𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))
136135impcom 395 . . 3 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))
137 oveq2 6820 . . . . 5 (𝑛 = ((𝑘 + 𝑚) − (♯‘𝑧)) → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
138137eqeq2d 2784 . . . 4 (𝑛 = ((𝑘 + 𝑚) − (♯‘𝑧)) → (𝑥 = (𝑧 cyclShift 𝑛) ↔ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))
139138rspcev 3465 . . 3 ((((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))
140136, 139syl6com 37 . 2 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
14141, 140pm2.61ian 835 1 (𝜑 → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 383  w3a 1098   = wceq 1634  wcel 2148  wrex 3065   class class class wbr 4797  cfv 6042  (class class class)co 6812  cr 10158  0cc0 10159   + caddc 10162   < clt 10297  cle 10298  cmin 10489  cn 11243  0cn0 11516  cz 11601  ...cfz 12555  chash 13343  Word cword 13509   cyclShift ccsh 13765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236  ax-pre-sup 10237
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-sup 8525  df-inf 8526  df-card 8986  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-div 10908  df-nn 11244  df-2 11302  df-n0 11517  df-z 11602  df-uz 11911  df-rp 12053  df-fz 12556  df-fzo 12696  df-fl 12823  df-mod 12899  df-hash 13344  df-word 13517  df-concat 13519  df-substr 13521  df-csh 13766
This theorem is referenced by:  erclwwlktr  27193  erclwwlkntr  27250
  Copyright terms: Public domain W3C validator