Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw0 Structured version   Visualization version   GIF version

Theorem cshw0 13749
 Description: A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.)
Assertion
Ref Expression
cshw0 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)

Proof of Theorem cshw0
StepHypRef Expression
1 0csh0 13748 . . . 4 (∅ cyclShift 0) = ∅
2 oveq1 6800 . . . 4 (∅ = 𝑊 → (∅ cyclShift 0) = (𝑊 cyclShift 0))
3 id 22 . . . 4 (∅ = 𝑊 → ∅ = 𝑊)
41, 2, 33eqtr3a 2829 . . 3 (∅ = 𝑊 → (𝑊 cyclShift 0) = 𝑊)
54a1d 25 . 2 (∅ = 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊))
6 0z 11590 . . . . . . 7 0 ∈ ℤ
7 cshword 13746 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, (0 mod (♯‘𝑊))⟩)))
86, 7mpan2 671 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, (0 mod (♯‘𝑊))⟩)))
98adantr 466 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, (0 mod (♯‘𝑊))⟩)))
10 necom 2996 . . . . . 6 (∅ ≠ 𝑊𝑊 ≠ ∅)
11 lennncl 13521 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
12 nnrp 12045 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
13 0mod 12909 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℝ+ → (0 mod (♯‘𝑊)) = 0)
1413opeq1d 4545 . . . . . . . . 9 ((♯‘𝑊) ∈ ℝ+ → ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩ = ⟨0, (♯‘𝑊)⟩)
1514oveq2d 6809 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → (𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) = (𝑊 substr ⟨0, (♯‘𝑊)⟩))
1613opeq2d 4546 . . . . . . . . 9 ((♯‘𝑊) ∈ ℝ+ → ⟨0, (0 mod (♯‘𝑊))⟩ = ⟨0, 0⟩)
1716oveq2d 6809 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → (𝑊 substr ⟨0, (0 mod (♯‘𝑊))⟩) = (𝑊 substr ⟨0, 0⟩))
1815, 17oveq12d 6811 . . . . . . 7 ((♯‘𝑊) ∈ ℝ+ → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, (0 mod (♯‘𝑊))⟩)) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, 0⟩)))
1911, 12, 183syl 18 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, (0 mod (♯‘𝑊))⟩)) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, 0⟩)))
2010, 19sylan2b 581 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr ⟨(0 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, (0 mod (♯‘𝑊))⟩)) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, 0⟩)))
219, 20eqtrd 2805 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, 0⟩)))
22 swrdid 13637 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
2322adantr 466 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
24 swrd00 13626 . . . . . 6 (𝑊 substr ⟨0, 0⟩) = ∅
2524a1i 11 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 substr ⟨0, 0⟩) = ∅)
2623, 25oveq12d 6811 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → ((𝑊 substr ⟨0, (♯‘𝑊)⟩) ++ (𝑊 substr ⟨0, 0⟩)) = (𝑊 ++ ∅))
27 ccatrid 13569 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 ++ ∅) = 𝑊)
2827adantr 466 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 ++ ∅) = 𝑊)
2921, 26, 283eqtrd 2809 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊) → (𝑊 cyclShift 0) = 𝑊)
3029expcom 398 . 2 (∅ ≠ 𝑊 → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊))
315, 30pm2.61ine 3026 1 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∅c0 4063  ⟨cop 4322  ‘cfv 6031  (class class class)co 6793  0cc0 10138  ℕcn 11222  ℤcz 11579  ℝ+crp 12035   mod cmo 12876  ♯chash 13321  Word cword 13487   ++ cconcat 13489   substr csubstr 13491   cyclShift ccsh 13743 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-hash 13322  df-word 13495  df-concat 13497  df-substr 13499  df-csh 13744 This theorem is referenced by:  cshwn  13752  2cshwcshw  13780  scshwfzeqfzo  13781  cshwrepswhash1  16016  crctcshlem4  26948  clwwisshclwws  27165  erclwwlkref  27170  erclwwlknref  27227
 Copyright terms: Public domain W3C validator