![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshnz | Structured version Visualization version GIF version |
Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018.) (Revised by AV, 17-Nov-2018.) |
Ref | Expression |
---|---|
cshnz | ⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csh 13756 | . . 3 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 substr 〈0, (𝑛 mod (♯‘𝑤))〉)))) | |
2 | 0ex 4943 | . . . 4 ⊢ ∅ ∈ V | |
3 | ovex 6843 | . . . 4 ⊢ ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 substr 〈0, (𝑛 mod (♯‘𝑤))〉)) ∈ V | |
4 | 2, 3 | ifex 4301 | . . 3 ⊢ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 substr 〈0, (𝑛 mod (♯‘𝑤))〉))) ∈ V |
5 | 1, 4 | dmmpt2 7410 | . 2 ⊢ dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ) |
6 | id 22 | . . 3 ⊢ (¬ 𝑁 ∈ ℤ → ¬ 𝑁 ∈ ℤ) | |
7 | 6 | intnand 1000 | . 2 ⊢ (¬ 𝑁 ∈ ℤ → ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ)) |
8 | ndmovg 6984 | . 2 ⊢ ((dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ) ∧ ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = ∅) | |
9 | 5, 7, 8 | sylancr 698 | 1 ⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 {cab 2747 ∃wrex 3052 ∅c0 4059 ifcif 4231 〈cop 4328 × cxp 5265 dom cdm 5267 Fn wfn 6045 ‘cfv 6050 (class class class)co 6815 0cc0 10149 ℕ0cn0 11505 ℤcz 11590 ..^cfzo 12680 mod cmo 12883 ♯chash 13332 ++ cconcat 13500 substr csubstr 13502 cyclShift ccsh 13755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-1st 7335 df-2nd 7336 df-csh 13756 |
This theorem is referenced by: 0csh0 13760 cshwcl 13765 |
Copyright terms: Public domain | W3C validator |