MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshnz Structured version   Visualization version   GIF version

Theorem cshnz 13759
Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018.) (Revised by AV, 17-Nov-2018.)
Assertion
Ref Expression
cshnz 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅)

Proof of Theorem cshnz
Dummy variables 𝑓 𝑙 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-csh 13756 . . 3 cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 substr ⟨0, (𝑛 mod (♯‘𝑤))⟩))))
2 0ex 4943 . . . 4 ∅ ∈ V
3 ovex 6843 . . . 4 ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 substr ⟨0, (𝑛 mod (♯‘𝑤))⟩)) ∈ V
42, 3ifex 4301 . . 3 if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 substr ⟨0, (𝑛 mod (♯‘𝑤))⟩))) ∈ V
51, 4dmmpt2 7410 . 2 dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ)
6 id 22 . . 3 𝑁 ∈ ℤ → ¬ 𝑁 ∈ ℤ)
76intnand 1000 . 2 𝑁 ∈ ℤ → ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ))
8 ndmovg 6984 . 2 ((dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ) ∧ ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = ∅)
95, 7, 8sylancr 698 1 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2140  {cab 2747  wrex 3052  c0 4059  ifcif 4231  cop 4328   × cxp 5265  dom cdm 5267   Fn wfn 6045  cfv 6050  (class class class)co 6815  0cc0 10149  0cn0 11505  cz 11590  ..^cfzo 12680   mod cmo 12883  chash 13332   ++ cconcat 13500   substr csubstr 13502   cyclShift ccsh 13755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-1st 7335  df-2nd 7336  df-csh 13756
This theorem is referenced by:  0csh0  13760  cshwcl  13765
  Copyright terms: Public domain W3C validator