![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbvarg | Structured version Visualization version GIF version |
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbvarg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3350 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | vex 3341 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | df-csb 3673 | . . . . . . 7 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} | |
4 | sbcel2gv 3635 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
5 | 4 | abbi1dv 2879 | . . . . . . 7 ⊢ (𝑦 ∈ V → {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝑥} = 𝑦) |
6 | 3, 5 | syl5eq 2804 | . . . . . 6 ⊢ (𝑦 ∈ V → ⦋𝑦 / 𝑥⦌𝑥 = 𝑦) |
7 | 2, 6 | ax-mp 5 | . . . . 5 ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 |
8 | 7 | csbeq2i 4134 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑦⦌𝑦 |
9 | csbco 3682 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝑥 = ⦋𝐴 / 𝑥⦌𝑥 | |
10 | df-csb 3673 | . . . 4 ⊢ ⦋𝐴 / 𝑦⦌𝑦 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} | |
11 | 8, 9, 10 | 3eqtr3i 2788 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} |
12 | sbcel2gv 3635 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) | |
13 | 12 | abbi1dv 2879 | . . 3 ⊢ (𝐴 ∈ V → {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝑦} = 𝐴) |
14 | 11, 13 | syl5eq 2804 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
15 | 1, 14 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2137 {cab 2744 Vcvv 3338 [wsbc 3574 ⦋csb 3672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-v 3340 df-sbc 3575 df-csb 3673 |
This theorem is referenced by: sbccsb2 4146 csbfv 6392 ixpsnval 8075 csbwrdg 13518 swrdspsleq 13647 prmgaplem7 15961 telgsums 18588 ixpsnbasval 19409 scmatscm 20519 pm2mpf1lem 20799 pm2mpcoe1 20805 idpm2idmp 20806 pm2mpmhmlem2 20824 monmat2matmon 20829 pm2mp 20830 fvmptnn04if 20854 chfacfscmulfsupp 20864 cayhamlem4 20893 divcncf 23414 iuninc 29684 f1od2 29806 esum2dlem 30461 bnj110 31233 bj-sels 33254 relowlpssretop 33521 rdgeqoa 33527 finxpreclem4 33540 csbvargi 34232 renegclALT 34750 cdlemk40 36705 brtrclfv2 38519 cotrclrcl 38534 frege124d 38553 frege70 38727 frege72 38729 frege77 38734 frege91 38748 frege92 38749 frege116 38773 frege118 38775 frege120 38777 rusbcALT 39140 onfrALTlem5 39257 onfrALTlem4 39258 onfrALTlem5VD 39618 onfrALTlem4VD 39619 iccelpart 41877 ply1mulgsumlem4 42685 |
Copyright terms: Public domain | W3C validator |