![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbrecsg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.) |
Ref | Expression |
---|---|
csbrecsg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbwrecsg 33503 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) | |
2 | csbconstg 3693 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ E = E ) | |
3 | wrecseq1 7561 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌ E = E → wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) |
5 | csbconstg 3693 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌On = On) | |
6 | wrecseq2 7562 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌On = On → wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) |
8 | 1, 4, 7 | 3eqtrd 2808 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) |
9 | df-recs 7620 | . . 3 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
10 | 9 | csbeq2i 4135 | . 2 ⊢ ⦋𝐴 / 𝑥⦌recs(𝐹) = ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) |
11 | df-recs 7620 | . 2 ⊢ recs(⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹) | |
12 | 8, 10, 11 | 3eqtr4g 2829 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ⦋csb 3680 E cep 5161 Oncon0 5866 wrecscwrecs 7557 recscrecs 7619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-xp 5255 df-cnv 5257 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-iota 5994 df-fv 6039 df-wrecs 7558 df-recs 7620 |
This theorem is referenced by: csbrdgg 33505 |
Copyright terms: Public domain | W3C validator |