Mathbox for ML < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrdgg Structured version   Visualization version   GIF version

Theorem csbrdgg 33512
 Description: Move class substitution in and out of the recursive function generator. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbrdgg (𝐴𝑉𝐴 / 𝑥rec(𝐹, 𝐼) = rec(𝐴 / 𝑥𝐹, 𝐴 / 𝑥𝐼))

Proof of Theorem csbrdgg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 csbrecsg 33511 . . 3 (𝐴𝑉𝐴 / 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs(𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))))
2 csbmpt2 5144 . . . . 5 (𝐴𝑉𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ 𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
3 csbif 4277 . . . . . . 7 𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if([𝐴 / 𝑥]𝑔 = ∅, 𝐴 / 𝑥𝐼, 𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))
4 sbcg 3653 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑔 = ∅ ↔ 𝑔 = ∅))
5 csbif 4277 . . . . . . . . 9 𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if([𝐴 / 𝑥]Lim dom 𝑔, 𝐴 / 𝑥 ran 𝑔, 𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔)))
6 sbcg 3653 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]Lim dom 𝑔 ↔ Lim dom 𝑔))
7 csbconstg 3695 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥 ran 𝑔 = ran 𝑔)
8 csbfv12 6372 . . . . . . . . . . 11 𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔)) = (𝐴 / 𝑥𝐹𝐴 / 𝑥(𝑔 dom 𝑔))
9 csbconstg 3695 . . . . . . . . . . . 12 (𝐴𝑉𝐴 / 𝑥(𝑔 dom 𝑔) = (𝑔 dom 𝑔))
109fveq2d 6336 . . . . . . . . . . 11 (𝐴𝑉 → (𝐴 / 𝑥𝐹𝐴 / 𝑥(𝑔 dom 𝑔)) = (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))
118, 10syl5eq 2817 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔)) = (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))
126, 7, 11ifbieq12d 4252 . . . . . . . . 9 (𝐴𝑉 → if([𝐴 / 𝑥]Lim dom 𝑔, 𝐴 / 𝑥 ran 𝑔, 𝐴 / 𝑥(𝐹‘(𝑔 dom 𝑔))) = if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))
135, 12syl5eq 2817 . . . . . . . 8 (𝐴𝑉𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))
144, 13ifbieq2d 4250 . . . . . . 7 (𝐴𝑉 → if([𝐴 / 𝑥]𝑔 = ∅, 𝐴 / 𝑥𝐼, 𝐴 / 𝑥if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))
153, 14syl5eq 2817 . . . . . 6 (𝐴𝑉𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))
1615mpteq2dv 4879 . . . . 5 (𝐴𝑉 → (𝑔 ∈ V ↦ 𝐴 / 𝑥if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))))
172, 16eqtrd 2805 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))))
18 recseq 7623 . . . 4 (𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))) → recs(𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))))
1917, 18syl 17 . . 3 (𝐴𝑉 → recs(𝐴 / 𝑥(𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))))
201, 19eqtrd 2805 . 2 (𝐴𝑉𝐴 / 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔)))))))
21 df-rdg 7659 . . 3 rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
2221csbeq2i 4137 . 2 𝐴 / 𝑥rec(𝐹, 𝐼) = 𝐴 / 𝑥recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
23 df-rdg 7659 . 2 rec(𝐴 / 𝑥𝐹, 𝐴 / 𝑥𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴 / 𝑥𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐴 / 𝑥𝐹‘(𝑔 dom 𝑔))))))
2420, 22, 233eqtr4g 2830 1 (𝐴𝑉𝐴 / 𝑥rec(𝐹, 𝐼) = rec(𝐴 / 𝑥𝐹, 𝐴 / 𝑥𝐼))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145  Vcvv 3351  [wsbc 3587  ⦋csb 3682  ∅c0 4063  ifcif 4225  ∪ cuni 4574   ↦ cmpt 4863  dom cdm 5249  ran crn 5250  Lim wlim 5867  ‘cfv 6031  recscrecs 7620  reccrdg 7658 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-xp 5255  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-iota 5994  df-fv 6039  df-wrecs 7559  df-recs 7621  df-rdg 7659 This theorem is referenced by:  csbfinxpg  33562
 Copyright terms: Public domain W3C validator