![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbprc | Structured version Visualization version GIF version |
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.) |
Ref | Expression |
---|---|
csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3478 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | falim 1538 | . . . 4 ⊢ (⊥ → 𝐴 ∈ V) | |
3 | 1, 2 | pm5.21ni 366 | . . 3 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
4 | 3 | abbidv 2770 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
5 | df-csb 3567 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
6 | fal 1530 | . . . 4 ⊢ ¬ ⊥ | |
7 | 6 | abf 4011 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
8 | 7 | eqcomi 2660 | . 2 ⊢ ∅ = {𝑦 ∣ ⊥} |
9 | 4, 5, 8 | 3eqtr4g 2710 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ⊥wfal 1528 ∈ wcel 2030 {cab 2637 Vcvv 3231 [wsbc 3468 ⦋csb 3566 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-nul 3949 |
This theorem is referenced by: csb0 4015 sbcel12 4016 sbcne12 4019 sbcel2 4022 csbidm 4035 csbun 4042 csbin 4043 csbif 4171 csbuni 4498 sbcbr123 4739 sbcbr 4740 csbexg 4825 csbopab 5037 csbxp 5234 csbres 5431 csbima12 5518 csbrn 5631 csbiota 5919 csbfv12 6269 csbfv 6271 csbriota 6663 csbov123 6727 csbov 6728 csbdif 33301 |
Copyright terms: Public domain | W3C validator |