![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbopabgALT | Structured version Visualization version GIF version |
Description: Move substitution into a class abstraction. Version of csbopab 5159 with a sethood antecedent but depending on fewer axioms. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
csbopabgALT | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3678 | . . 3 ⊢ (𝑤 = 𝐴 → ⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑}) | |
2 | dfsbcq2 3580 | . . . 4 ⊢ (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | opabbidv 4869 | . . 3 ⊢ (𝑤 = 𝐴 → {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
4 | 1, 3 | eqeq12d 2776 | . 2 ⊢ (𝑤 = 𝐴 → (⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} ↔ ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑})) |
5 | vex 3344 | . . 3 ⊢ 𝑤 ∈ V | |
6 | nfs1v 2575 | . . . 4 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝜑 | |
7 | 6 | nfopab 4871 | . . 3 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} |
8 | sbequ12 2259 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) | |
9 | 8 | opabbidv 4869 | . . 3 ⊢ (𝑥 = 𝑤 → {〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑}) |
10 | 5, 7, 9 | csbief 3700 | . 2 ⊢ ⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} |
11 | 4, 10 | vtoclg 3407 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 [wsb 2047 ∈ wcel 2140 [wsbc 3577 ⦋csb 3675 {copab 4865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-sbc 3578 df-csb 3676 df-opab 4866 |
This theorem is referenced by: csbcnvgALT 5463 |
Copyright terms: Public domain | W3C validator |