MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopab Structured version   Visualization version   GIF version

Theorem csbopab 5037
Description: Move substitution into a class abstraction. Version of csbopabgALT 5038 without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbopab 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)

Proof of Theorem csbopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3569 . . . 4 (𝑤 = 𝐴𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑})
2 dfsbcq2 3471 . . . . 5 (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32opabbidv 4749 . . . 4 (𝑤 = 𝐴 → {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
41, 3eqeq12d 2666 . . 3 (𝑤 = 𝐴 → (𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} ↔ 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}))
5 vex 3234 . . . 4 𝑤 ∈ V
6 nfs1v 2465 . . . . 5 𝑥[𝑤 / 𝑥]𝜑
76nfopab 4751 . . . 4 𝑥{⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}
8 sbequ12 2149 . . . . 5 (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑))
98opabbidv 4749 . . . 4 (𝑥 = 𝑤 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑})
105, 7, 9csbief 3591 . . 3 𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}
114, 10vtoclg 3297 . 2 (𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
12 csbprc 4013 . . 3 𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = ∅)
13 sbcex 3478 . . . . . . 7 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
1413con3i 150 . . . . . 6 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝜑)
1514nexdv 1904 . . . . 5 𝐴 ∈ V → ¬ ∃𝑧[𝐴 / 𝑥]𝜑)
1615nexdv 1904 . . . 4 𝐴 ∈ V → ¬ ∃𝑦𝑧[𝐴 / 𝑥]𝜑)
17 opabn0 5035 . . . . 5 ({⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} ≠ ∅ ↔ ∃𝑦𝑧[𝐴 / 𝑥]𝜑)
1817necon1bbii 2872 . . . 4 (¬ ∃𝑦𝑧[𝐴 / 𝑥]𝜑 ↔ {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} = ∅)
1916, 18sylib 208 . . 3 𝐴 ∈ V → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} = ∅)
2012, 19eqtr4d 2688 . 2 𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
2111, 20pm2.61i 176 1 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1523  wex 1744  [wsb 1937  wcel 2030  Vcvv 3231  [wsbc 3468  csb 3566  c0 3948  {copab 4745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-opab 4746
This theorem is referenced by:  csbmpt12  5039  csbcnv  5338
  Copyright terms: Public domain W3C validator