MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnest1g Structured version   Visualization version   GIF version

Theorem csbnest1g 4145
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
csbnest1g (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)

Proof of Theorem csbnest1g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3698 . . . 4 𝑥𝑦 / 𝑥𝐶
21ax-gen 1870 . . 3 𝑦𝑥𝑦 / 𝑥𝐶
3 csbnestgf 4140 . . 3 ((𝐴𝑉 ∧ ∀𝑦𝑥𝑦 / 𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶)
42, 3mpan2 671 . 2 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶)
5 csbco 3692 . . 3 𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐵 / 𝑥𝐶
65csbeq2i 4137 . 2 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶
7 csbco 3692 . 2 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶
84, 6, 73eqtr3g 2828 1 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1629   = wceq 1631  wcel 2145  wnfc 2900  csb 3682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-sbc 3588  df-csb 3683
This theorem is referenced by:  csbidm  4146
  Copyright terms: Public domain W3C validator