![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbmpt2 | Structured version Visualization version GIF version |
Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019.) |
Ref | Expression |
---|---|
csbmpt2 | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbmpt12 5152 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) | |
2 | csbconstg 3679 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑌 = 𝑌) | |
3 | 2 | mpteq1d 4882 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
4 | 1, 3 | eqtrd 2786 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌 ↦ 𝑍) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1624 ∈ wcel 2131 ⦋csb 3666 ↦ cmpt 4873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-fal 1630 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-opab 4857 df-mpt 4874 |
This theorem is referenced by: matgsum 20437 csbrdgg 33478 |
Copyright terms: Public domain | W3C validator |