![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbingOLD | Structured version Visualization version GIF version |
Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) Obsolete as of 18-Aug-2018. Use csbin 4154 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
csbingOLD | ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3678 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷)) | |
2 | csbeq1 3678 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
3 | csbeq1 3678 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷) | |
4 | 2, 3 | ineq12d 3959 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
5 | 1, 4 | eqeq12d 2776 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) ↔ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))) |
6 | vex 3344 | . . 3 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3691 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
8 | nfcsb1v 3691 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐷 | |
9 | 7, 8 | nfin 3964 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) |
10 | csbeq1a 3684 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
11 | csbeq1a 3684 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐷 = ⦋𝑦 / 𝑥⦌𝐷) | |
12 | 10, 11 | ineq12d 3959 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷)) |
13 | 6, 9, 12 | csbief 3700 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑦 / 𝑥⦌𝐷) |
14 | 5, 13 | vtoclg 3407 | 1 ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ⦋csb 3675 ∩ cin 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-in 3723 |
This theorem is referenced by: onfrALTlem4VD 39640 csbresgVD 39649 |
Copyright terms: Public domain | W3C validator |