MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbin Structured version   Visualization version   GIF version

Theorem csbin 4145
Description: Distribute proper substitution into a class through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
csbin 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem csbin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3669 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵𝐶))
2 csbeq1 3669 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 csbeq1 3669 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
42, 3ineq12d 3950 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
51, 4eqeq12d 2767 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)))
6 vex 3335 . . . 4 𝑦 ∈ V
7 nfcsb1v 3682 . . . . 5 𝑥𝑦 / 𝑥𝐵
8 nfcsb1v 3682 . . . . 5 𝑥𝑦 / 𝑥𝐶
97, 8nfin 3955 . . . 4 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
10 csbeq1a 3675 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
11 csbeq1a 3675 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1210, 11ineq12d 3950 . . . 4 (𝑥 = 𝑦 → (𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
136, 9, 12csbief 3691 . . 3 𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
145, 13vtoclg 3398 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
15 csbprc 4115 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = ∅)
16 csbprc 4115 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
17 csbprc 4115 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
1816, 17ineq12d 3950 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (∅ ∩ ∅))
19 in0 4103 . . . 4 (∅ ∩ ∅) = ∅
2018, 19syl6req 2803 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2115, 20eqtrd 2786 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2214, 21pm2.61i 176 1 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1624  wcel 2131  Vcvv 3332  csb 3666  cin 3706  c0 4050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-in 3714  df-nul 4051
This theorem is referenced by:  csbres  5546  disjxpin  29700  csbpredg  33475  onfrALTlem5  39251  onfrALTlem4  39252  csbresgOLD  39547  onfrALTlem5VD  39612  disjinfi  39871
  Copyright terms: Public domain W3C validator