Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbied2 Structured version   Visualization version   GIF version

Theorem csbied2 3594
 Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
csbied2.1 (𝜑𝐴𝑉)
csbied2.2 (𝜑𝐴 = 𝐵)
csbied2.3 ((𝜑𝑥 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
csbied2 (𝜑𝐴 / 𝑥𝐶 = 𝐷)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbied2
StepHypRef Expression
1 csbied2.1 . 2 (𝜑𝐴𝑉)
2 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
3 csbied2.2 . . . 4 (𝜑𝐴 = 𝐵)
42, 3sylan9eqr 2707 . . 3 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐵)
5 csbied2.3 . . 3 ((𝜑𝑥 = 𝐵) → 𝐶 = 𝐷)
64, 5syldan 486 . 2 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)
71, 6csbied 3593 1 (𝜑𝐴 / 𝑥𝐶 = 𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ⦋csb 3566 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-sbc 3469  df-csb 3567 This theorem is referenced by:  prdsval  16162  cidfval  16384  monfval  16439  idfuval  16583  isnat  16654  fucco  16669  catcval  16793  xpcval  16864  1stfval  16878  2ndfval  16881  prfval  16886  evlf2  16905  curfval  16910  hofval  16939  ipoval  17201  poimirlem2  33541  rngcvalALTV  42286  ringcvalALTV  42332
 Copyright terms: Public domain W3C validator