MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie2 Structured version   Visualization version   GIF version

Theorem csbie2 3692
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.)
Hypotheses
Ref Expression
csbie2t.1 𝐴 ∈ V
csbie2t.2 𝐵 ∈ V
csbie2.3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
csbie2 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem csbie2
StepHypRef Expression
1 csbie2.3 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)
21gen2 1860 . 2 𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)
3 csbie2t.1 . . 3 𝐴 ∈ V
4 csbie2t.2 . . 3 𝐵 ∈ V
53, 4csbie2t 3691 . 2 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷)
62, 5ax-mp 5 1 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1618   = wceq 1620  wcel 2127  Vcvv 3328  csb 3662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-v 3330  df-sbc 3565  df-csb 3663
This theorem is referenced by:  fsumcnv  14674  fprodcnv  14883  dfrhm2  18890  mamufval  20364  mvmulfval  20521  vtxdgfval  26544  rnghmval  42370
  Copyright terms: Public domain W3C validator