MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie Structured version   Visualization version   GIF version

Theorem csbie 3592
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
csbie.1 𝐴 ∈ V
csbie.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbie 𝐴 / 𝑥𝐵 = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbie
StepHypRef Expression
1 csbie.1 . 2 𝐴 ∈ V
2 nfcv 2793 . 2 𝑥𝐶
3 csbie.2 . 2 (𝑥 = 𝐴𝐵 = 𝐶)
41, 2, 3csbief 3591 1 𝐴 / 𝑥𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  Vcvv 3231  csb 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-sbc 3469  df-csb 3567
This theorem is referenced by:  pofun  5080  eqerlem  7821  mptnn0fsuppd  12838  fsum  14495  fsumcnv  14548  fsumshftm  14557  fsum0diag2  14559  fprod  14715  fprodcnv  14757  bpolyval  14824  ruclem1  15004  odval  17999  psrass1lem  19425  mamufval  20239  pm2mpval  20648  isibl  23577  dfitg  23581  dvfsumlem2  23835  fsumdvdsmul  24966  disjxpin  29527  poimirlem1  33540  poimirlem5  33544  poimirlem15  33554  poimirlem16  33555  poimirlem17  33556  poimirlem19  33558  poimirlem20  33559  poimirlem22  33561  poimirlem24  33563  poimirlem28  33567  fphpd  37697  monotuz  37823  oddcomabszz  37826  fnwe2val  37936  fnwe2lem1  37937
  Copyright terms: Public domain W3C validator