![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
csbie.1 | ⊢ 𝐴 ∈ V |
csbie.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbie | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | nfcv 2793 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | csbie.2 | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | csbief 3591 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⦋csb 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-sbc 3469 df-csb 3567 |
This theorem is referenced by: pofun 5080 eqerlem 7821 mptnn0fsuppd 12838 fsum 14495 fsumcnv 14548 fsumshftm 14557 fsum0diag2 14559 fprod 14715 fprodcnv 14757 bpolyval 14824 ruclem1 15004 odval 17999 psrass1lem 19425 mamufval 20239 pm2mpval 20648 isibl 23577 dfitg 23581 dvfsumlem2 23835 fsumdvdsmul 24966 disjxpin 29527 poimirlem1 33540 poimirlem5 33544 poimirlem15 33554 poimirlem16 33555 poimirlem17 33556 poimirlem19 33558 poimirlem20 33559 poimirlem22 33561 poimirlem24 33563 poimirlem28 33567 fphpd 37697 monotuz 37823 oddcomabszz 37826 fnwe2val 37936 fnwe2lem1 37937 |
Copyright terms: Public domain | W3C validator |