MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbidm Structured version   Visualization version   GIF version

Theorem csbidm 4144
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
csbidm 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csbidm
StepHypRef Expression
1 csbnest1g 4143 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐴 / 𝑥𝐵)
2 csbconstg 3693 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 = 𝐴)
32csbeq1d 3687 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
41, 3eqtrd 2804 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
5 csbprc 4122 . . 3 𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = ∅)
6 csbprc 4122 . . 3 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
75, 6eqtr4d 2807 . 2 𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
84, 7pm2.61i 176 1 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1630  wcel 2144  Vcvv 3349  csb 3680  c0 4061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-nul 4062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator