MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv2g Structured version   Visualization version   GIF version

Theorem csbfv2g 6270
Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbfv2g (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbfv2g
StepHypRef Expression
1 csbfv12 6269 . 2 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
2 csbconstg 3579 . . 3 (𝐴𝐶𝐴 / 𝑥𝐹 = 𝐹)
32fveq1d 6231 . 2 (𝐴𝐶 → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (𝐹𝐴 / 𝑥𝐵))
41, 3syl5eq 2697 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  csb 3566  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-nul 4822  ax-pow 4873
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-dm 5153  df-iota 5889  df-fv 5934
This theorem is referenced by:  csbfv  6271  ixpsnval  7953  swrdspsleq  13495  sumeq2ii  14467  fsumabs  14577  prodeq2ii  14687  fprodabs  14748  ixpsnbasval  19257  coe1fzgsumdlem  19719  evl1gsumdlem  19768  pm2mp  20678  cayhamlem4  20741  iuninc  29505  cdlemk39s  36544
  Copyright terms: Public domain W3C validator