MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv12 Structured version   Visualization version   GIF version

Theorem csbfv12 6392
Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 20-Aug-2018.)
Assertion
Ref Expression
csbfv12 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)

Proof of Theorem csbfv12
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbiota 6042 . . . 4 𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦) = (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦)
2 sbcbr123 4858 . . . . . 6 ([𝐴 / 𝑥]𝐵𝐹𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦)
3 csbconstg 3687 . . . . . . 7 (𝐴 ∈ V → 𝐴 / 𝑥𝑦 = 𝑦)
43breq2d 4816 . . . . . 6 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
52, 4syl5bb 272 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐹𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
65iotabidv 6033 . . . 4 (𝐴 ∈ V → (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
71, 6syl5eq 2806 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
8 df-fv 6057 . . . 4 (𝐹𝐵) = (℩𝑦𝐵𝐹𝑦)
98csbeq2i 4136 . . 3 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦)
10 df-fv 6057 . . 3 (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦)
117, 9, 103eqtr4g 2819 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
12 csbprc 4123 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = ∅)
13 csbprc 4123 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐹 = ∅)
1413fveq1d 6354 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (∅‘𝐴 / 𝑥𝐵))
15 0fv 6388 . . . 4 (∅‘𝐴 / 𝑥𝐵) = ∅
1614, 15syl6req 2811 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
1712, 16eqtrd 2794 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
1811, 17pm2.61i 176 1 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1632  wcel 2139  Vcvv 3340  [wsbc 3576  csb 3674  c0 4058   class class class wbr 4804  cio 6010  cfv 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-nul 4941  ax-pow 4992
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-dm 5276  df-iota 6012  df-fv 6057
This theorem is referenced by:  csbfv2g  6393  coe1fzgsumdlem  19873  evl1gsumdlem  19922  csbwrecsg  33484  csbrdgg  33486  rdgeqoa  33529  csbfinxpg  33536  cdlemk42  36731  iccelpart  41879
  Copyright terms: Public domain W3C validator