![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbex | Structured version Visualization version GIF version |
Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
csbex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
csbex | ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbexg 4825 | . 2 ⊢ (∀𝑥 𝐵 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | |
2 | csbex.1 | . 2 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | mpg 1764 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 Vcvv 3231 ⦋csb 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-nul 3949 |
This theorem is referenced by: iunopeqop 5010 dfmpt2 7312 cantnfdm 8599 cantnff 8609 bpolylem 14823 ruclem1 15004 pcmpt 15643 cidffn 16386 issubc 16542 natffn 16656 fnxpc 16863 evlfcl 16909 odf 18002 itgfsum 23638 itgparts 23855 vmaf 24890 ttgval 25800 abfmpel 29583 msrf 31565 finxpreclem2 33357 poimirlem17 33556 poimirlem23 33562 poimirlem24 33563 unirep 33637 cdlemk40 36522 aomclem6 37946 rnghmfn 42215 rngchomrnghmresALTV 42321 |
Copyright terms: Public domain | W3C validator |