![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version |
Description: Formula-building inference rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
3 | 2 | csbeq2dv 4025 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | 3 | trud 1533 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ⊤wtru 1524 ⦋csb 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-sbc 3469 df-csb 3567 |
This theorem is referenced by: csbnest1g 4034 csbvarg 4036 csbsng 4275 csbprg 4276 csbopg 4451 csbuni 4498 csbmpt12 5039 csbxp 5234 csbcnv 5338 csbcnvgALT 5339 csbdm 5350 csbres 5431 csbrn 5631 csbfv12 6269 fvmpt2curryd 7442 csbnegg 10316 csbwrdg 13366 matgsum 20291 disjxpin 29527 f1od2 29627 bj-csbsn 33024 csbpredg 33302 csbwrecsg 33303 csbrecsg 33304 csbrdgg 33305 csboprabg 33306 csbmpt22g 33307 csbfinxpg 33355 poimirlem24 33563 cdleme31so 35984 cdleme31sn 35985 cdleme31sn1 35986 cdleme31se 35987 cdleme31se2 35988 cdleme31sc 35989 cdleme31sde 35990 cdleme31sn2 35994 cdlemkid3N 36538 cdlemkid4 36539 csbxpgOLD 39368 csbresgOLD 39370 csbrngOLD 39371 climinf2mpt 40264 climinfmpt 40265 |
Copyright terms: Public domain | W3C validator |