![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version |
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | csbeq2dv.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | csbeq2d 4024 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ⦋csb 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-sbc 3469 df-csb 3567 |
This theorem is referenced by: csbeq2i 4026 mpt2mptsx 7278 dmmpt2ssx 7280 fmpt2x 7281 el2mpt2csbcl 7295 offval22 7298 ovmptss 7303 fmpt2co 7305 mpt2sn 7313 mpt2curryd 7440 fvmpt2curryd 7442 cantnffval 8598 fsumcom2 14549 fsumcom2OLD 14550 fprodcom2 14758 fprodcom2OLD 14759 bpolylem 14823 bpolyval 14824 ruclem1 15004 natfval 16653 fucval 16665 evlfval 16904 mpfrcl 19566 pmatcollpw3lem 20636 fsumcn 22720 fsum2cn 22721 dvmptfsum 23783 ttgval 25800 msrfval 31560 poimirlem5 33544 poimirlem6 33545 poimirlem7 33546 poimirlem8 33547 poimirlem10 33549 poimirlem11 33550 poimirlem12 33551 poimirlem15 33554 poimirlem16 33555 poimirlem17 33556 poimirlem18 33557 poimirlem19 33558 poimirlem20 33559 poimirlem21 33560 poimirlem22 33561 poimirlem24 33563 poimirlem26 33565 poimirlem27 33566 cdleme31sde 35990 cdlemeg47rv2 36115 rnghmval 42216 dmmpt2ssx2 42440 |
Copyright terms: Public domain | W3C validator |